
RUBIN’S CONJECTURE ON LOCAL UNITS IN THE ANTICYCLOTOMIC
TOWER AT INERT PRIMES: p = 3 CASE
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Abstract. We prove Rubin’s conjecture on the structure of local units in the anticyclotomic Zp-
extension of unramified quadratic extension of Qp in p = 3 case by extending Burungale-Kobayashi-
Ota’s work.
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1. Introduction

1.1. Background. Iwasawa theory is a basic tool to study the growth of the Mordell-Weil rank of elliptic
curves in a tower of number fields and its relation to special L-value. For an elliptic curve E over Q with
complex multiplication by an imaginary quadratic field K, it is classical to study the module of local
units modulo elliptic units attached to E in the Z2

p-extension of K. If p splits in K, then this module is
torsion, and its characteristic ideal is generated by the two-variable Katz p-adic L-function attached to
E (cf. [18]). However, if p inerts in K, this module is non-torsion, since the rank of the module of local
units is twice that of the module of elliptic units.

Let Λ be the Iwasawa algebra for the anticyclotomic Zp-extension of an unramified quadratic extension
of Qp. Rubin considered the Λ-module V , the anticyclotomic projection of local units of Z2

p-extension of
K, and defined two rank 1 free submodules V ±. He conjectured (cf. [13]) that

V = V + ⊕ V −.

The projection of every elliptic unit lies in V ϵ, where ϵ is the sign of L(E/Q, s). Under the conjecture,
Rubin constructed a p-adic L-function, which generates the quotient of V ϵ by the image of elliptic units.
Moreover, Agboola-Howard [1] formulated and proved an Iwasawa main conjecture that involves Rubin’s
p-adic L-function under Rubin’s conjecture.

Rubin proposed a criterion under which the conjecture is true in the case p ≥ 5. His criterion involves
the existence of following global objects:
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(R1) a CM elliptic curve with good supersingular reduction at p whose central L-value is p-indivisible,
(R2) a Heegner point over imaginary quadratic fields with p inert which is locally p-indivisible.

He proved that there are primes p with density 1 at which (R1) exists. In [3], using the results of [7],
Burungale-Kobayashi-Ota verified the existence of a modified (R1) for primes p > 3. For (R2), Rubin
verified that it exists for 5 ≤ p ≤ 1000 and p ̸≡ 1 (mod 12) by using the computation of Stephen
(unpublished, but similar to [2]). However, in general, it is difficult to verify the local p-indivisibility of
Heegner points. Burungale-Kobayashi-Ota consider formal CM points and the modular parametrization
of elliptic curves instead of Heegner points. They constructed such formal CM points when p > 3, and
proved Rubin’s conjecture in the case p > 3.

In this paper, we prove Rubin’s conjecture for the case p = 3 by constructing special formal CM
points in this case following Burungale-Kobayashi-Ota’s approach. As an application, we complete the
proof of Agboola-Howard’s main conjecture when p = 3. The result has various potential applications
such as extending the p-adic Waldspurger formula presented in [5] to the prime p = 3, [6] on Kato’s
epsilon-conjecture and [4] on vanishing of µ-invariants on Rubin’s p-adic L-function.

In the case p = 3, we remark that Rubin’s criterion also works and it may be verified by some
computational methods.

1.2. Statement. Let p be a prime. Let Φ be the unramified quadratic extension of Qp and O be its ring
of integers. Let F/O be a Lubin-Tate formal group with parameter π := −p. Let Φn = Φ(F [πn+1]) for
0 ≤ n ≤ ∞. Then we have an isomorphism κ : Gal(Φ∞/Φ)

∼−→ O×, σ 7→ κ(σ) where σ(v) = [κ(σ)−1](v)
for all v ∈ F [π∞]. Let ∆ be the torsion subgroup of Gal(Φ∞/Φ). Let Θn = Φ∆

n for all n ≤ ∞.

1.2.1. Coleman power series and Coates-Wiles homomorphism. For a finite extension F of Qp, we denote
U(F ) its group of local principal units. Define

U∞ =
(
lim←−(U(Φn)⊗Zp

O)
)κ|∆

, U∗
∞ = U∞ ⊗O TπF⊗−1 = HomO(TπF , U∞),

where TπF = lim←−F [π
n+1] is the π-adic Tate module of F . Wintenberger showed that U∗

∞ is a rank 2

free O[[Gal(Φ∞/Φ0)]]-module (cf. [17]).
Consider the Coates-Wiles logarithmic derivatives

δ : U∗
∞ → O, x = u⊗ a⊗ v⊗−1 7→ a · f

′(0)

f(0)
,

and

δn : U∗
∞ → Φn, x = u⊗ a⊗ v⊗−1 7→ a

λ′(vn)
· f

′(vn)

f(vn)
,

where u = (un)n ∈ lim←−U(Φn), a ∈ O, v = (vn)n ∈ TπF is a generator as O-module, f ∈ O[[X]]× is the
Coleman power series such that f(vn) = un and λ is the formal logarithm of F normalized by λ′(0) = 1.

For a finite character χ : Gal(Φ∞/Φ)→ Q×
p which factor through Gal(Φn/Φ), we define

δχ : U∗
∞ → Qp, x 7→ 1

πn+1

∑
γ∈Gal(Φn/Φ)

χ(γ)δn(x)
γ .

It is independent of the choice of n. For σ ∈ Gal(Φ∞/Φ), we have δχ(x
σ) = χ(σ)−1δχ(x).

1.2.2. Anticyclotomic projection. Let Ψ∞ be the anticyclotomic Zp-extension of Φ and G− = Gal(Ψ∞/Φ)
be its Galois group. Let G+ = Gal(Θ∞/Ψ∞). Let Ψn be the subextension of Ψ∞/Φ of degree pn. If χ is
an anticyclotomic character, i.e., χ is a homomorphism Gal(Ψn/Φ)→ Q×

p for some n, then δχ((σ−1)U∗
∞)

vanishes for all σ ∈ Gal(Φ∞/Ψ∞). Set V ∗
∞ := U∗

∞/{(σ−1)u|σ ∈ Gal(Φ∞/Ψ∞), u ∈ U∗
∞}. Then δχ factors

through V ∗
∞.

1.2.3. Decomposition of Local Principal Units. We say a non-trivial anticyclotomic character χ has con-
ductor pn if χ factors through Gal(Φn−1/Φ) but not through Gal(Φn−2/Φ), equivalently, χ factors
through Gal(Ψn−1/Φ) but not through Gal(Ψn−2/Φ). We say that trivial character has conductor 1.

Let Ξ+ (resp. Ξ−) be the set of anticyclotomic characters whose conductors are even (resp. odd)
powers of p. Define

V ∗,±
∞ :=

{
v ∈ V ∗

∞|δχ(v) = 0 for every χ ∈ Ξ∓} .
Set Λ = O[[G−]]. It is known that V ∗

∞ is a free Λ-module of rank 2. We will show the following theorem.
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Theorem 1.1. Assume p ≥ 3. We have

V ∗
∞ ≃ V ∗,+

∞ ⊕ V ∗,−
∞ .

Remark 1.2. Rubin conjectured and verified the direct decomposition for 5 ≤ p ≤ 1000 and p ̸≡ 1
(mod 12)(cf. [13]). Burungale, Kobayashi and Ota proved it for primes p ≥ 5(cf. [3]). We modify
Burungale-Kobayashi-Ota’s proof to include the case p = 3.

1.3. Strategy. We know that V ∗
∞ ≃ Λ2 by [17]. Consider the anticyclotomic projections of elliptic units

in V ∗
∞. Their images under δχ are algebraic parts of L-values of Hecke character χφ (Theorem 2.3,(1)).

They vanish if the root number of χφ is −1, which is the case if the root number W (φ) of φ is 1 and the
conductor of χ is an odd power of p, or W (φ) = −1 and the conductor of χ is an even power of p. Hence
the root number of φ determines which of V ∗,±

∞ the elliptic units belong to (Theorem 2.3,(2)). Moreover,
Rohrlich showed that there are all but finitely many anticyclotomic characters χ such that L(φχ, 1) ̸= 0.
This ensures the elliptic units above are nontrivial in V ±

∞ , so

rankΛ V ∗,±
∞ ≥ 1

(Theorem 2.1).
On the other hand, we have a perfect pairing

⟨ , ⟩ : F(Ψ∞)⊗O Φ/O × V ∗
∞ → Φ/O.

The annihilator of V ∗,±
∞ under this paring is A± ⊗ Φ/O, where

A± := {y ∈ F(Ψ∞)|λχ(y) = 0 for all χ ∈ Ξ±}.
These modules A± can be well studied (Proposition 3.2 and Lemma 3.1). We may found that A±⊗Φ/O
generate the whole F(Ψ∞)⊗ Φ/O. Hence

V ∗,+
∞ ∩ V ∗,−

∞ = 0 and rankΛ V ∗,±
∞ = 1.

Now its suffices to show that V ∗
∞/V ∗,−

∞ is isomorphic to V ∗,+
∞ . This can be done if V ∗

∞/V ∗,−
∞ is free of

rank 1 and there is ξ ∈ V ∗,+
∞ ⊗R for some coefficient ring R such that δχ(ξ) ∈ O× ⊗R.

Burungale-Kobayashi-Ota considered the elliptic units of root number +1 twisted by an anticyclotomic
character ν along Zℓ-extension for an auxiliary ℓ. Their images under δχ are algebraic parts of L(1, φχν).
By the work of Finis [7], this ν can be well-chosen for the purpose that the algebraic parts of L-values
do not vanish mod p. Hence there is ξν ∈ V ∗,+

∞ ⊗R for some coefficient ring R such that

δχ(ξν) ∈ O× ⊗R
(Theorem 2.2).

The last step (see Theorem 4.1) is to show

(1.1) (A− ⊗ Φ/O)G
−
= F(Φ)⊗ Φ/O.

By the Nakayama Lemma, the Λ-module V ∗
∞/V ∗,−

∞ is free of rank 1, which completes the proof. To show
Theorem 4.1, it suffices to prove

|Ĥ0(G−
n , A

−
n )| = |F(Φ)/Nn/0(A

−
n )| ≤ pn−1,

where A−
n = A− ∩ F(Ψn). The key point is to construct points in A−

n whose norm in A−
0 is locally

p-indivisible (Theorem 4.6). Actually, we will construct points satisfying
(1) y ∈ F(Φ)\pF(Φ),
(2) ys ∈ F(Ψs) such that trs+1/sys+1 = −ys−1 for s ≥ 1 and tr1/0y1 = −y.
(3) ys ∈ A− if s is odd.

Choose a supersingular CM elliptic curve E which has good supersingular reduction at p. Then Ê ≃ F
over O, where Ê is the formal group associated to E. Rubin considered the Heegner points in A−

n , which
are the images of some CM points on X0(N)(O) under the modular parametrization map

π : X0(N)→ E/O.

If the bottom layer is p-indivisible, then we are done. Unfortunately, we do not know the p-divisibility
of it.

The idea of Burungale-Kobayashi-Ota is to construct formal CM points instead. There are supersingu-
lar points on X0(N)(O) which may not be CM but fake CM, i.e., the formal group of the "representative"
elliptic curve has an O-action. We call such points formal CM points. Similar to the construction of
Heegner points, Gross constructed a system of compatible formal CM points on Ê(Ψn).

3



Now we need to find a "good" supersingular point on X0(N)(O) which leads to the p-indivisibility in
the bottom layer. We may choose a point on X0(N)(Fp2) such that

(1) the point "represents" a supersingular elliptic curve with a level structure
(2) under modular parametrization π : X0(N)→ E the point is unramified and maps to O

Taking formal completion of π over O along these two points, we get an isomorphism X̂0(N) ≃ Ê.
Choose Q ∈ Ê(m)\pÊ(m), where m is the maximal ideal of O. Let P ∈ X0(N)(O) be the preimage of Q.
Then the point P "represents" a fake CM elliptic curve A with a level structure. This elliptic curve A
is what we want. Noting that X0(N) is not fine moduli, we need replace X0(N) by X(Γ0(N) ∩ Γ1(M))
and modify the above argument.

Acknowledgement. We would like to thank Professor Ashay A. Burungale and Professor Ye Tian for
their insightful discussions. We also appreciate the valuable suggestions provided by the anonymous
referee.

2. Hecke L-values and elliptic units

In this section, we recall the proof of the following two theorems given in [13] and [3].

Theorem 2.1. rankΛ V ∗,±
∞ ≥ 1.

Theorem 2.2. There exists an element ξ ∈ V ∗,+
∞ such that δ(ξ) ∈ O×.

The basic ideas involve using the relation of elliptic units and Hecke L-values, and properties of Hecke
L-values proved by Rohrlich [12] and Finis [7].

Firstly, we choose an auxiliary imaginary quadratic field. By [3, Lemma 3.4], there exist infinitely
many imaginary quadratic fields K of odd discriminants such that

(1)
(

2
DK

)
= +1 where −DK < 0 is the discriminant of K;

(2) p inerts in K and is prime to hK .

In the rest of our paper, K is an imaginary quadratic field satisfying (2). We do not assume that K
satisfies (1) except in the proof of Theorem 2.2. For a non-zero integral ideal g of K, we denote by K(g)
the ray class field of K of conductor g. Let H = K(1) be the Hilbert class field of K.

Let φ be a Hecke character over K with infinity type (1, 0) of fφ such that φ◦NH/K corresponds to an
elliptic curve E/H which is CM by OK , is isogenous to all its Gal(H/Q)-conjugate and is good at primes
above p. We note that if φ is a canonical Hecke character (in the sense of [11]), such an E always exists.

We fix a smooth Weierstrass model of the elliptic curve E over O∩H and we may assume the period
lattice L attached to the Néron differential ω is given by ΩOK for some Ω ∈ C×. Fix such Ω.

Let ℓ ≥ 5 be a prime such that ℓ splits in K, ℓ ∤ hK and p ∤ ℓ − 1. Let Xℓ be the set of finite Hecke
characters that factor through the anticyclotomic Zℓ-extension of K.

Theorem 2.3. Let ν ∈ Xℓ be a character of order ℓm. Let R be the integer ring of the finite extension
of Φ generated by the image of φ and ν. Then there exists a ξν ∈ U∗

∞ ⊗R such that

(1) the following holds

δ(ξν) =
Lfℓ(φν, 1)

Ω
, δχ(ξν) =

Lfℓp(φνχ, 1)

Ω
,

for all finite characters χ of Gal(Φ∞/Φ0);
(2) the anticyclotomic projection of ξν lies in V ∗,ϵ

∞ ⊗R where ϵ is the root number of φ.

Proof. As above, we choose an imaginary quadratic field K, a prime p that inerts in K and is prime to
hK , a Q-curve E and the associated Hecke character φ. Besides, we choose an auxiliary prime ℓ. Let
T = TπE.

(1) Consider the elliptic units zflm = (zflmpn)n ∈ lim←−n
H1(K(flmpn), T⊗−1(1)). Let

Mn = H(E[pn+1])Lm ⊂ K(fℓmpn+1)
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where Lm is the m-th layer of anticyclotomic Zℓ-extension of K. Let ν be an anticyclotomic
Hecke character over K of order ℓm. Consider the composition of the following maps

lim←−
n

H1(K(fℓmpn+1), T⊗−1(1))
cores−−−→ lim←−

n

H1(Mn, T
⊗−1(1))

locp−−→ lim←−
n

H1(Mn ⊗Kp, T
⊗−1(1))

ν−→ lim←−
n

H1(H(E[pn+1])⊗Kp, T
⊗−1(1))⊗R

pr−→ lim←−
n

H1(Φn, T
⊗−1(1))⊗R →

(
lim←−
n

H1(Φn, T
⊗−1(1))

)∆

⊗R ≃ U∗
∞ ⊗R.

Let ξν ∈ U∗
∞ ⊗R be the image of zfℓmpn+1 under the above map. Then we have

δχ(ξν) =
Lfℓp(φχν, 1)

Ω

for all finite characters χ of Gal(Φ∞/Φ0).
(2) For character χ of G− of conductor pn+1, Greenberg ([8, p.247]) showed that W (φνχ) =

W (φχ) = (−1)n+1W (φ) if p is odd and ℓ ∤ f, . Therefore L(φνχ, 1) = 0 if (−1)n+1W (φ) = −1
and the theorem follows from (1).

□

Proof of Theorem 2.1. By [12], for all but finitely many anticyclotomic characters ρ,

L(1, ρφ) ̸= 0, if W (φρ) = 1.

If ρ is of conductor pn and φ is of root number ϵ, then W (φρ) = (−1)nϵ. Thus there exist infinitely many
anticyclotomic characters ρ such that L(1, φρ) ̸= 0. Hence δχ(ξ) ̸= 0 for the elliptic units ξ associated
to φ by the theorem above. Since V ∗

∞ ≃ Λ2 is torsion-free, we have rankΛ V ∗,±
∞ ≥ 1. □

Proof of Theorem 2.2. Suppose that φ is canonical. We have W (φ) = +1 (cf. [11]). Then by [7], for all
but finitely many ν ∈ Xℓ, one has

Ω−1Lf(φν, 1) ∈ R×.

Fix a ν, Theorem 2.3 shows that there is a ξν ∈ V ∗,+
∞ ⊗R such that δ(ξν) ∈ R×. It implies that there

exists an element of V ∗,+
∞ whose image under δ belongs to O× . □

3. Kummer pairing

We recall the construction of the Kummer pairing

⟨ , ⟩ : (F(Ψ∞)⊗O Φ/O)× V ∗
∞ → Φ/O.

Note that Θn = Φ∆
n for all n ≤ ∞. The Kummer sequence

0→ F [πn+1]→ F(Φ) πn+1

−−−→ F(Φ)→ 0

gives us an exact sequence

0→ F(Θn)/π
n+1F(Θn)→ H1(Θn,F [πn+1])→ H1(Θn,F(Φ))[πn+1]→ 0.

Hazewinkel [9] showed that ∩nNnF(Θn) = 0 if F is a Lubin-Tate formal group of height 2 over O. Hence
lim←−F(Θn) = 0 and its Tate duality ([15]) lim−→H1(Θn,F(Φ))pn+1 is also zero. Taking direct limit of the
above exact sequences, we have

F(Θn)⊗ Φ/O ≃ H1(Θ∞,F [π∞]) ≃ Hom(Gal(Φ/Φ∞),F [π∞])∆ ≃ HomO(U∞,F [π∞]),

where the last isomorphism is given by local class field theory. Therefore we have a perfect pairing

⟨ , ⟩ : (F(Θ∞)⊗ Φ/O)× U∗
∞ → Φ/O.

Since F(Θ∞) has no p-torsion, the exact sequence

0→ F(Θ∞)→ F(Θ∞)⊗O Φ→ F(Θ∞)⊗ Φ/O → 0

induces an isomorphism (F(Θ∞)⊗ Φ/O)G
+

≃ HomO(V∞,F [π∞]). However, we have that

(F(Θ∞)⊗ Φ/O)G
+

/(F(Ψ∞)⊗ Φ/O) ≃ H1(G+,F(Θ∞)) ⊂ H1(Ψ∞,F(Φ)) = lim−→H1(Ψn,F(Φ)) = 0.

Here the reason for the last equality is similar to lim−→H1(Ψn,F(Φ)) = 0. Hence we have a perfect paring

⟨ , ⟩ : (F(Ψ∞)⊗O Φ/O)× V ∗
∞ → Φ/O.
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By Wiles’ explicit reciprocity law ([16]), the pairing can be described as

⟨y ⊗ π−n, x⟩ = π−1−m−n TrΦm/Φ(δm(x)λ(y)) ∈ Φ/O
with y ∈ F(Ψn), x ∈ V ∗

∞ and some sufficiently large m.
For any anticyclotomic character χ of conductor dividing pn+1, let

λχ : F(Ψ∞)→ Φ∞, y 7→ 1

πn

∑
γ∈Gal(Ψn/Φ)

χ−1(γ)λ(y)γ , y ∈ F(Ψn).

Denote
A± := {y ∈ F(Ψ∞)|λχ(y) = 0 for all χ ∈ Ξ±}.

We recall the following properties of λχ.

Lemma 3.1 ([13, Lemma 5.5]).
(1) If y ∈ F(Ψ∞), χ is a finite character of G− and σ ∈ G−, then λχ(y

σ) = χ(σ)λχ(y);
(2) If y ∈ F(Ψn) and the conductor of χ is greater than pn+1, then λχ(y) = 0;
(3) If y ∈ F(Ψ∞), then λ(y) =

∑
λχ(y), summing over all finite characters χ of G−;

(4) If m ≥ n, y ∈ F(Ψm) and χ is a character of Gal(Ψn/Φ), then λχ(Nm/ny) = pm−nλχ(y).
(5) A+ ∩A− = 0;
(6) (A+ ⊗ Φ/O) + (A− ⊗ Φ/O) = F(Ψ∞)⊗ Φ/O.

Proposition 3.2 ([13, Proposition 5.6]). Under the Kummer pairing (F(Ψ∞)⊗O Φ/O)× V ∗
∞ → Φ/O,

the annihilator of V ∗,±
∞ is A± ⊗ Φ/O.

Proof. If y ∈ F(Ψ∞) and x ∈ V ∗
∞, then the above formula and Lemma 3.1 yields

⟨y ⊗ π−n, x⟩ = π−1−m−n TrΦm/Φ(δm(x)λ(y)) = π−1−m−n
∑
γ

δm(x)γλ(yγ)

= π−1−m−n
∑
γ

δm(x)γ
∑
χ

λχ(y
γ) =

∑
χ

π−1−m−n
∑
γ

δm(x)γχ(γ)λχ(y)

=
∑
χ

δχ(x)λχ(y).

By definition, V ∗,±
∞ annihilate A± ⊗ Φ/O.

Now suppose that x ∈ V ∗
∞ and x annihilates A± ⊗ Φ/O and χ ∈ Ξ∓. Choose y ∈ A± such that

λχ(y) ̸= 0. Then the above computation shows that∑
ρ

δρ(x)λρ(y
γ) = 0

for every γ. Thus
πnδχ(x)λχ(y) =

∑
ρ

∑
γ

χ−1(γ)δρ(x)λρ(y
γ) = 0.

Hence δχ(x) = 0, i.e., x ∈ V ∗,±
∞ . □

Now we have the following corollary by Lemma 3.1 (6) and Proposition 3.2.

Corollary 3.3. V ∗,+
∞ ∩ V ∗,−

∞ = 0.

4. Local points

In this section, we will prove the following theorem.

Theorem 4.1. We have
(A− ⊗ Φ/O)G

−
= F(Φ)⊗ Φ/O.

Corollary 4.2. The Λ-module V ∗
∞/V ∗,−

∞ is free of rank one.

Proof. Note that

F(Φ)⊗ Φ/O ≃ (A− ⊗ Φ/O)G
−
≃ Hom

(
(V ∗

∞/V ∗,−
∞ )/(γ − 1),Φ/O

)
where γ is the topological generator of G−. Hence (V ∗

∞/V ∗,−
∞ )/(γ − 1) ≃ O generated by one element.

By Nakayama’s lemma, V ∗
∞/V ∗,−

∞ is also generated by one element. Hence the Λ-module V ∗
∞/V ∗,−

∞ is
free of rank one. □
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We will construct a system of local points in F(Ψn), which can be used to show that (A−⊗Φ/O)G−
is

isomorphic to the divisible module F(Φ)⊗Φ/O. So the dual module (under Kummer pairing) V ∗
∞/V ∗,−

∞
is free.

Let E be an elliptic curve over Q with good supersingular reduction at p. Consider the modular
parametrization π : X0(N) → E over Q. We may assume π is strong Weil by choosing E in its isogeny
class. By the Néron mapping property, π extends to a morphism between smooth models over Zp.

4.1. A special supersingular elliptic curve.

Lemma 4.3 ([3, Lemma 5.1]). Let q = p2 and A be an elliptic curve over Fq with aq(A) = ±2p.
(1) Any finite subgroup A(Fq) is defined over Fq.
(2) For A an elliptic curve over O which is a lift of A, the associated formal group Â is Lubin-Tate

with parameter ∓p.

Lemma 4.4. If p ≥ 3, there is a supersingular point with ap2 = ±2p in X0(N)(Fp2) which is unramified
under π : X0(N)Fp2

→ E.

Proof. See [3] for p > 3. We give a proof for p = 3. Let Sram be the set of points of X0(N) which are
ramified under π. By Hurwitz formula [10, Chapter 7, Theorem 4.16]

#Sram ≤ 2g − 2,

where g is the genus of X0(N). Let µ = N
∏

p|N (1 + p−1) be the degree of natural projection X0(N)→
X(1). By genus formula

g = 1 +
µ

12
− ε2

4
− ε3

3
− ε∞

2
,

where ε2 (resp. ε3) is the number of elliptic points of period 2 (resp. 3) in X0(N), and ε∞ the number
of cusp of X0(N). Hence

#Sram ≤
µ

6
− ε2

2
− 2ε3

3
− ε∞ <

µ

6
.

The elliptic curve
A/F3

: y2 = x3 − x

is supersingular and j(A) = 0 = 1728. Note that A(F3) = {O, (0, 0), (1, 0), (−1, 0)} ≃ Z/2Z × Z/2Z,
A(F9) ≃ Z/4Z × Z/4Z, and a3(A) = 0, a9(A) = −6. Since p ∤ N , the group A[N ] is isomorphic to
Z/NZ × Z/NZ and thus has µ cyclic subgroup of order N , which we denote by {C1(N), · · · , Cµ(N)}
(they are defined over F9). Since #Aut(A) = 12 ([14, Theorem III.10.1]) and −1 induces an isomorphism
of pairs (A,Ci(N)) → (A,Ci(N)), there are at least µ

6 isomorphism classes of pair (A,Ci(N)). Hence
there is a supersingular point with a9 = −6 in X0(N)(F9) which is unramified under π : X0(N)→ E.

□

4.2. A formal CM point. By Lemma 4.4, we can choose a supersingular point P of X0(N)Fq unramified
under π, representing an elliptic curve A with ap2 = ±2p and a Γ0(N)-level structure. In particular,
when p = 3, A is chosen to be y2 = x3−x. We assume that π(P ) = O by replacing π with #E(Fp2)π. In
this subsection, for a properly chosen E, we construct a lift P ∈ X0(N)(O) of P representing an elliptic
curve A over O and a Γ0(N)-level structure, such that π(P ) ∈ Ê(m)\pÊ(m), where m be the maximal
ideal of O. For p > 3, the construction details can be found in [3]. From now on, we assume p = 3.

Lemma 4.5. Let A : y2 = x3 − x be the supersingular elliptic curve over F3. There are infinitely many
integers N such that

(1) N is the conductor of a CM elliptic curve E/Q which is good at 2, 3 and satisfies a3(E) = 0;
(2) for a Γ0(N)-structure C(N) of A, the automorphism group of (A,C(N)) over F3 is {±1}.

Proof. Let X be the set of integers satisfying conditions a) and b) in the lemma, and Y the set of integers
N satisfying the following conditions:

a) N is conductor of a CM elliptic curve E/Q which is good at 2, 3 and satisfies a3 = 0;
b) φ(N) > #(ker(g + 1) ∪ ker(g − 1));
c) −3 is not a square in Z/NZ.
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We claim that Y is an infinite set and Y ⊂ X. It completes the proof.
We first show that Y is an infinite set. Choose a CM elliptic curve E/Q which has good reduction

at 2, 3 and satisfies a3 = 0 (for example, E/Q : y2 + y = x3 − 38x + 90). Let NE be its conductor. By
Dirichlet’s theorem on arithmetic progressions, there are infinitely many primes ℓ ≡ 5 (mod 12) prime
to NE and satisfying φ(ℓ2N) > #(ker(g+1)∪ ker(g− 1)). Let Eℓ be the quadratic twists of E by prime
ℓ. It is a CM elliptic curve with conductor ℓ2NE and satisfies a3 = 0. Hence ℓ2NE ∈ Y , which implies
that Y is a infinite set.

Now we show that Y ⊂ X. Let N be an integer satisfying b) and c). Since #Aut(A) = 12, it
suffices to prove that for any g ∈ Aut(A)\{±1} of order 2 or 3, the actions of g on N -cyclic subgroup
of A are not stable. If not, i.e., there is g ∈ Aut(A)\{±1} of order 2 or 3 and an N -cyclic subgroup
C(N), such that for any primitive elements α ∈ C(N), gα = nα for some n ∈ Z/NZ. It follows that
n2α = g2α = α or n3α = g3α = α (depends on the order of g). Thus 0 ≡ n2 − 1 ≡ (n − 1)(n + 1)
(mod N) or 0 ≡ n3−1 ≡ (n−1)(n2+n+1) (mod N). Since −3 is not a square in Z/NZ, we have n ≡ 1
or −1. So all primitive elements α ∈ C(N) must belong to ker(g − 1) ∪ ker(g + 1), which contradicts
condition b).

□

Choose a point ξ of order 4 in A(Fp2) ≃ Z/4Z × Z/4Z. Let X(Γ0(N),Γ1(4)) be the modular curve
with Γ0(N) and Γ1(4)-level structure. Then X(Γ0(N),Γ1(4)) is a fine moduli space. Consider

X(Γ0(N),Γ1(4))(Fp2)

π′

��

P
′
= (A,C(N), ξ)

_

��
X0(N)(Fp2)

π

��

P = (A,C(N))
_

unramified
��

E(Fp2) O

.

We choose E as in Lemma 4.5. Then the automorphism group of (A,C(N)) is {±1}. Hence #π′−1
(P ) =

deg π′ = [GL2(Z) : Γ1(4)]/2, and therefore π′ is unramified at P
′
. The formal completion of π ◦ π′ :

X(Γ0(N),Γ1(4))→ E (on integral models) at P
′
is an isomorphism ([10, Chapter 4, Proposition 3.26]).

Take a point

Q ∈ Ê(m)\pÊ(m).

Then there is a point P ′ ∈ X(Γ0(N),Γ1(4))(O) over P
′
sent to Q by π ◦π′. As X(Γ0(N),Γ1(4)) is a fine

moduli space, there is an elliptic curve A defined over O that represents P ′ by the moduli interpretation.
The formal group Â is Lubin–Tate by Lemma 4.3. In particular, A is a formal CM elliptic curve. Let P
be the image of P ′ in X0(N).

4.3. Construction of local points. Since Â is Lubin-Tate, the module T = TpA = Ot is a free O-
module of rank 1. For s ≥ 0, let Ts = p−sZpt+ T , Cs = Ts/T . Let As = A/Cs, a quasi-canonical lift of
conductor ps of A with respect to A.

Let Ψ′
s be the fixed field of subgroup of Gal(Φ/Φ) stabilizing Ts and Ψ′

∞ = ∪Ψ′
s. It’s known that

Gal(Ψ′
s/Φ) = (O/psO)×/(Z/psZ)×, Gal(Ψ′

∞/Φ) ≃ Zp × Z/(p+ 1)Z.

Let ∆′ be the torsion subgroup of Gal(Ψ′
∞/Φ). The field Ψ′

∞ contains the anticyclotomic Zp-extension
Ψ∞. The field Ψs lies in Ψ′

s+1.
Then As/OΨ′

s
and the canonical level structure induced from that of A define a point zs ∈ X0(N)(OΨ′

s
).

Let xs = π(zs). Let

ys =
∑
σ∈∆′

σxs+1 ∈ Ê(mΨs
), and y = (p+ 1)Q ∈ Ê(m).
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Ψ′
∞

∆′

Ψ∞ Ψ′
s+1

Ψs Ψ′
1

Φ = Ψ0

Theorem 4.6. There is a system of local points ys ∈ F(Ψs) and y ∈ F(Φ)\pF(Φ), such that

Trs+1/s ys+1 = apys − ys−1, s ≥ 1

and
Tr1/0 y1 = apy0 − y, and y0 = apx0,

where ap = ap(E)(= 0). Moreover, ys ∈ A+ if s is even, and ys ∈ A− if s is odd.

Proof. Identify F with Ê. Consider the action of the Hecke operator Tp on xs. There are two types of
lattice containing Ts with index p:

1 + aps

ps+1
Zpt+ T for a ∈ {0, 1, . . . , p− 1}, or

1

ps
Zpt+

1

p
T.

The first type is of form σxs+1 and permuted by the action of Gal(Ψ′
s+1/Ψ

′
s) and the second type is

equivalent to the lattice 1
ps−1Zpt+ T . Hence for s ≥ 1, we have

Tpxs =
∑
σ

σxs+1 + xs−1.

Since Tp acts as ap(E) on E, we have the desired relation.
For the proof of ys ∈ A±, consider the anticyclotomic character χ of conductor pk+1 for k ≥ 1. If

s < k, then λχ(ys) = 0. If s ≥ k, then λχ(Ns/kys) = ps−kλχ(ys). But if 2 ∤ s− k, we have

λχ(Ns/kys) = λχ

(
−(−p)(s−k−1)/2yk−1

)
= 0,

i.e. λχ(ys) = 0, hence ys ∈ A− if s is odd. Similarly, if χ is trivial and s is even,

psλχ(ys) = λχ(Nn/0ys) = λχ

(
(−p)n/2y0

)
= 0.

Hence ys ∈ A+ if s is even. □

4.4. Proof of Theorem 4.1. Write G−
n = Gal(Ψn/Φ). For any O[G−

n ]-module Z, denote the Herbrand
quotient of Z by hn(Z), i.e.,

hn(Z) := |Ĥ0(G−
n , Z)|/|H1(G−

n , A
−)|.

We know that hn(Z1/Z2) = hn(Z1)/hn(Z2) and hn(Z) = 1 if Z is finite. Let A−
n = A− ∩ F(Ψn). The

exact sequence
0→ A− → A− ⊗ Φ→ A− ⊗ Φ/O → 0

gives the O[G−]-mod isomorphism

H1
(
G−, A−) ≃ (A− ⊗ Φ/O

)G−

/
(
(A−)G

−
⊗ Φ/O

)
≃
(
A− ⊗ Φ/O

)G−

/ (F(Φ)⊗ Φ/O) .

Note that for odd n, we have hn(A
−
n ) = pn−1 ([13, Lemma 7.1]), hence

|H1(G−
n , A

−
n )| = |Ĥ0(G−

n , A
−
n )|/hn(A

−
n ) = p−(n−1)|(A−

n )
G−

n /Trn A
−
n | ≤ [F(Φ) : Oy] = 1.

Therefore, H1(G−, A−) = lim−→H1(G−
n , A

−
n ) = 0, i.e. (A− ⊗ Φ/O)G−

= F(Φ)⊗ Φ/O.
9



4.5. Rubin’s conjecture.

Theorem 4.7. Assuming p ≥ 3, we have

V ∗
∞ ≃ V ∗,+

∞ ⊕ V ∗,−
∞ .

Proof. The Corollary 3.3, Theorem 2.2 and Corollary 4.2 complete the proof. □

5. Some applications

Recall that K is an imaginary quadratic field where p does not divide hK and is inert in K. Let
K∞ be the anticyclotomic Zp-extension of K. We identify G− with Gal(K∞/K). Let R be the ring of
integers of a finite extension of Φ containing the image of φ̂. Let T = R(φ̂) and W = T ⊗O Φ/O. The
completion of Kn at the prime above p is identical to Ψn. Note that W ≃ F [π∞]⊗R as a R[GΦ]-module.
The exact sequence

0→ F [πn+1]→ F(Φ) πn+1

−−−→ F(Φ)→ 0

gives the Kummer map F(Ψn)/π
n+1 → H1(Ψn,F [πn+1]). Hence we have

F(Ψn)⊗R⊗Qp/Zp → H1(Ψn,F [π∞])⊗R ≃ H1(Ψn,W ).

Let H1
±(Ψn,W ) ⊂ H1(Ψn,W ) be the Kummer image of F±(Ψn)⊗R⊗Qp/Zp where

F±(Ψn) := {y ∈ F(Ψn)|λχ(y) = 0 for all χ ∈ Ξ± factor through Gal(Ψn/Ψ)}.
Let H1

±(Ψn, T ) ⊂ H1(Ψn, T ) be the orthogonal complement of H1
±(Ψn,W ) with respect to the local Tate

pairing.
We define

Sel±(Kn,W ) = ker

H1(Kn,W )→ H1(Ψn,W )

H1
±(Ψn,W )

×
∏
v∤p

H1(Kn,v,W )

 .

Let X∗ be the Pontryagin dual of lim−→n
Sel∗(Kn,W ) for ∗ ∈ {+,−}. In [1, Theorem 3.6] it is shown that

Xϵ is a finitely generated torsion Λ-module.
Let E and φ be as defined in section 2. As in Theorem 2.3, there is a unit ξ = ξ(E,Ω) ∈ U∗

∞ such
that

δ(ξ) =
L(φ, 1)

Ω
and

δχ(ξ) =
L(φχ, 1)

Ω
for a finite character χ of Gal(Φ∞/Φ0). Let ϵ ∈ {+,−} be the sign of φ. It is known that the projection
of ξ on V ∗

∞ belongs to V ∗,ϵ
∞ . Define C∞ as the free Λ-submodule of V ∗,ϵ

∞ generated by ξ. Take a generator
vϵ of the Λ-module V ∗,ϵ

∞ and write
ξ = Lp(φ,Ω, vϵ) · vϵ

for a power series Lp(φ,Ω, vϵ) ∈ Λ. We call it Rubin’s p-adic L-function associated with φ. We sometimes
omit the indices of Lp(φ,Ω, vϵ) and write its evaluation at an anticyclotomic character χ by Lp(χ) for
simplicity. Rubin’s p-adic L-function has the following interpolation property:

Lp(χ) =
1

δχ(vϵ)

L(φχ, 1)

Ω

In analogy with [3], we have the following theorems.

Theorem 5.1. Let ϵ = W (φ) be the sign of φ, then

char(X−ϵ) = (Lp).

Theorem 5.2. Let χ be an anticyclotomic character of conductor pn. Then we have

rankE(Kn)
χ ≤

{
ordχ(Lp), χ ∈ Ξϵ

ordχ(Lp) + 1, χ ∈ Ξ−ϵ
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