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Efficient characterization and learning of quantum states in finite-dimensional systems is a central
task in quantum information science. Symmetric informationally complete POVMs (SIC-POVMs)
offer optimal tomographic performance, but their existence in general dimensions remains an open
problem in quantum information theory. A SIC-POVM is constructed from a single fiducial state
whose Weyl–Heisenberg orbit forms a highly symmetric, informationally complete set. In this work,
we resolve a relaxed yet fundamental version of this problem by proving that for every finite dimen-
sion, there always exists a fiducial state whose Weyl–Heisenberg orbit yields a minimal IC-POVM,
without symmetry assumptions. Our key contribution is a complete diagonalization of the associ-
ated Gram matrix: its eigenvectors form tensor products of Fourier basis states, and its eigenvalues
are given by the two-dimensional discrete Fourier transform of the fiducial state’s autocorrelation
function. This spectral structure enables explicit reconstruction formulas and reveals several classes
of fiducial states cannot generate IC-POVMs or the more restrictive SIC-POVMs. Leveraging the
constructed orbits, we propose a classical shadow tomography framework for qudit systems, where
the minimum eigenvalue directly governs the estimation variance. Our method achieves sampling
efficiency comparable to SIC-POVMs while significantly reducing computational complexity to ob-
tain the fiduial state. Numerical simulations confirm that in high dimensions, randomly chosen
fiducial states yield IC-POVMs with high probability, demonstrating both theoretical universality
and practical feasibility.

I. INTRODUCTION

The complete characterization and efficient learning of
quantum states stands as a central challenge in quantum
information science. A general d-dimensional quantum
state is described by a density matrix ρ ∈ Cd×d [1], which
contains d2−1 independent real parameters and encodes
all physically accessible information about the system.
Recovering this information via quantum state tomogra-
phy requires a measurement scheme that provides at least
d2 − 1 linearly independent statistics—exactly the mini-
mal requirement satisfied by an informationally complete
positive operator-valued measure (IC-POVM) [2].

Beyond enabling full state reconstruction, information
completeness also underpin modern approaches such as
classical shadow tomography [3], which aims to predict
a large number of observable properties from a limited
set of randomized measurements. Recent advances have
generalized the classical shadow tomography framework
from using randomly multiple sets of orthonormal pro-
jective measurements [3–13] to employing a single IC-
POVM [14–17].

projective measurements onto MUB and a sic-povm,
the first two of five open question in quantum informa-
tion. linked together, for general dimension d still un-
known. sic-povm , weyl-heisenbureg orbit. zauner con-
jecture. numerical , stark conjecture. d dimensional in-
formation processing important.

In this work, we answer this question affirma-
tively by constructing minimal IC-POVMs based on

∗ wangyu@bimsa.cn

Weyl–Heisenberg orbits, and demonstrating their effec-
tiveness in classical shadow estimation. Our results show
that these fixed measurements not only admit efficient re-
construction formulas but also achieve sample and post-
processing complexity comparable to traditional random-
ized shadow schemes.

The emergence of classical shadow tomography
has transformed this landscape by reconceptualizing the
tomographic problem: rather than pursuing complete
state reconstruction, shadow protocols focus on effi-
ciently estimating specific observable expectation values
with polynomial measurement scaling. This paradigm
shift reduces resource requirements from exponential to
polynomial, making tomography tractable for systems of
practical interest. However, the efficacy of shadow to-
mography critically depends on the underlying measure-
ment ensemble, specifically requiring informationally
complete positive operator-valued measures (IC-
POVMs) that satisfy two stringent criteria: spanning the
complete space of Hermitian operators while maintaining
exactly d2 elements for optimal efficiency.

Among the most celebrated candidates for such mea-
surements are symmetric informationally complete
POVMs (SIC-POVMs), which emerge from the orbit
structure of the Weyl-Heisenberg group—the discrete
analog of phase-space displacement operators in quan-
tum optics. When a fiducial state satisfies the restrictive
SIC condition |⟨ψi|ψj⟩|2 = (dδij + 1)/(d + 1), its Weyl-
Heisenberg orbit generates a measurement ensemble that
simultaneously achieves informational completeness and
forms a unitary 2-design. Such configurations are prov-
ably optimal for tomographic reconstruction, minimizing
estimation variance while providing robust performance
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across diverse quantum states.

Despite their theoretical elegance, SIC-POVMs face
a fundamental constructibility crisis. Zauner’s con-
jecture, which asserts their existence across all finite di-
mensions, remains unproven after decades of intensive
investigation. Analytical constructions exist only for se-
lect low dimensions, while numerical solutions have been
identified up to dimension 181 through exhaustive com-
putational searches. The deep mathematical connec-
tions to algebraic number theory—particularly aspects
of Hilbert’s twelfth problem and class field extensions—
suggest that universal SIC-POVM constructions may be
intrinsically intractable. Recent work has established
that resolving Stark’s conjecture in number theory would
imply Zauner’s conjecture, highlighting the profound
mathematical depth underlying this problem.

This existence uncertainty creates a critical bottleneck
for scalable quantum technologies. While SIC-POVMs
represent the theoretical gold standard for quantum to-
mography, their non-constructive nature prevents de-
ployment in realistic high-dimensional quantum systems
where efficient state characterization is most urgently
needed. The stringent symmetry requirements that en-
dow SIC-POVMs with optimality simultaneously render
them inaccessible for practical implementation.

This work addresses a fundamental question that re-
frames the tomographic landscape: Can we achieve
informational completeness without demanding
perfect geometric symmetry? We investigate
whether the Weyl-Heisenberg orbit of a generic fiducial
state—one that does not necessarily satisfy the restric-
tive SIC condition—can nevertheless span the operator
space and form a minimal IC-POVM suitable for shadow
tomography.

Our approach represents a paradigmatic shift from
geometric regularity to algebraic completeness.
Rather than enforcing uniform inner product magnitudes
and geometric constraints, we determine informational
completeness purely through the spectral properties of
the associated Gram matrix constructed from fiducial
state overlaps. When this matrix achieves full rank, the
corresponding Weyl-Heisenberg orbit spans the opera-
tor space, yielding an IC-POVM with well-defined re-
construction guarantees.

We establish both theoretical foundations and con-
structive results that resolve the dimensional scaling
problem for quantum tomography. Our main contri-
butions include: (1) explicit fiducial state constructions
that guarantee informational completeness across arbi-
trary dimensions, (2) comprehensive characterization of
failure modes that prevent IC-POVM formation, (3)
performance analysis demonstrating near-optimal recon-
struction variance, and (4) optimization protocols that
achieve SIC-POVM-level performance without requiring
exact symmetry conditions.

These results demonstrate that the pursuit of perfect
symmetry, while mathematically compelling, may impose
unnecessary constraints on practical quantum tomog-

raphy. By relaxing structural requirements while pre-
serving informational completeness, we enable scalable
shadow tomography protocols that bridge theoretical op-
timality with experimental reality, opening new pathways
for quantum state characterization in high-dimensional
and near-term quantum architectures.

II. PRELIMINARIES

Definition 1 (Fourier transformed basis state |Fm⟩).
The Fourier transform plays a central role in quan-
tum computing. In any d-dimensional Hilbert space, the
Fourier-transformed basis states are defined as

|Fm⟩ = 1√
d

d−1∑
j=0

ωmj |j⟩, ω = e2πi/d, m = 0, . . . , d− 1.

(1)
These basis states form an orthonormal basis and will
later play a central role in the spectral decomposition of
Gram matrices associated with Weyl–Heisenberg orbits.

Definition 2 (Weyl–Heisenberg group). The Weyl–
Heisenberg group is a unitary group acting on a d-
dimensional Hilbert space, generated by the shift operator
X and the phase operator Z, defined as

X =

d−1∑
j=0

|j + 1 mod d⟩⟨j|, Z =

d−1∑
j=0

ωj |j⟩⟨j|. (2)

These operators satisfy the commutation relation ZX =
ωXZ, and generate a full set of displacement operators:

Mjk = XjZk, for j, k ∈ Zd. (3)

The Weyl–Heisenberg group can be viewed as a natural
generalization of the Pauli group from qubit systems to
arbitrary finite dimensions, providing a discrete analog
of phase-space translations in finite quantum systems.

Remark. Strictly speaking, the full Weyl–Heisenberg
group includes an additional global phase: {ωℓXjZk |
ℓ, j, k ∈ Zd}, ensuring closure under group multiplication.
In this work, we omit the global phase factor as it does
not affect the Gram matrix structure or the informational
completeness of the resulting POVMs.

Definition 3 (Weyl–Heisenberg orbit). Given a fiducial
quantum state |ϕ⟩ ∈ Hd, the Weyl–Heisenberg orbit of
|ϕ⟩ is the set

Oϕ =
{
XjZk|ϕ⟩ | j, k ∈ Zd

}
, (4)

consisting of d2 states generated by applying all Weyl–
Heisenberg displacement operators to |ϕ⟩.

To simplify notation, we label each operator Mjk by a
single index α ∈ {0, . . . , d2−1} using α = jd+k, so that

Mα :=Mjk = XjZk, with α = jd+ k. (5)
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Definition 4 (Gram matrix G|ϕ⟩ for Weyl–Heisenberg

orbit). Let |ϕ⟩ =
∑d−1

k=0 ak|k⟩ ∈ Hd be a normalized quan-

tum state. The associated Gram matrix G|ϕ⟩ ∈ Cd2×d2

is
defined by the squared overlaps between elements of the
Weyl–Heisenberg orbit:

G|ϕ⟩ =
(
|⟨ϕα|ϕβ⟩|2

)d2−1

α,β=0
, (6)

where |ϕα⟩ =Mα|ϕ⟩.
This matrix is real, symmetric, and hence Hermitian.

Explicitly, it can also be expressed as

G|ϕ⟩ =

d−1∑
m,n,p,q=0

|⟨ϕ|(XmZn)†(XpZq)|ϕ⟩|2·|mn⟩⟨pq|. (7)

Matrix form. For clarity, the Gram matrix can be writ-
ten as

G|ϕ⟩ =


|⟨ϕ0|ϕ0⟩|2 |⟨ϕ0|ϕ1⟩|2 · · · |⟨ϕ0|ϕd2−1⟩|2
|⟨ϕ1|ϕ0⟩|2 |⟨ϕ1|ϕ1⟩|2 · · · |⟨ϕ1|ϕd2−1⟩|2

...
...

. . .
...

|⟨ϕd2−1|ϕ0⟩|2 |⟨ϕd2−1|ϕ1⟩|2 · · · |⟨ϕd2−1|ϕd2−1⟩|2


Property 1 (Tight frame property for any

Weyl–Heisenber orbit). Let {|ϕk⟩}d
2−1

k=0 be the set
of quantum states obtained by the action of the Weyl–
Heisenberg group on a fiducial state |ϕ⟩. Then this set
forms a tight frame with frame operator

d2−1∑
k=0

|ϕk⟩⟨ϕk| = d · I. (8)

A detailed proof is provided in Appendix A.

Method 1 (Fiducial state for SIC-POVM and Zauner’s
conjecture). A symmetric informationally complete
POVM (SIC-POVM) in a d-dimensional Hilbert space

is a set of d2 subnormalized projectors {|ϕk⟩⟨ϕk|/d}d
2−1

k=0 ,
such that the pairwise overlaps between the normalized
vectors |ϕk⟩ satisfy

|⟨ϕk|ϕk′⟩|2 =
1

d+ 1
, for all k ̸= k′. (9)

Equivalently, if the Gram matrix of a fiducial state |ϕ⟩
satisfies

G|ϕ⟩ =
1

d+ 1
(δαβ · (d+ 1) + (1− δαβ)) , (10)

then the corresponding Weyl–Heisenberg orbit forms a

SIC-POVM with elements {|ϕk⟩⟨ϕk|/d}d
2−1

k=0 .

The construction of SIC-POVMs [18] has been recog-
nized by Horodecki et al. as one of the five central open
problems in quantum information theory [19], specifically
concerning the existence of a SIC-POVM in every finite
dimension d. The prevailing approach is to search for

a fiducial state that satisfies Eq. (9), which then gener-
ates the desired structure via its Weyl–Heisenberg orbit.
Zauner’s conjecture posits that such a fiducial state ex-
ists for all d, and while both analytical and numerical
solutions have been found for certain dimensions, a gen-
eral proof remains elusive. Moreover, the problem reveals
intriguing connections to algebraic number theory, par-
ticularly to aspects of Hilbert’s twelfth problem [20, 21].
Notably, a recent QIP 2025 talk highlighted that a proof
of the Stark’s conjecture in number theory would imply
the validity of Zauner’s conjecture [22].
Once a suitable fiducial state is identified, its

Weyl–Heisenberg orbit yields a set of d2 equiangular lines
in complex Hilbert space [23], offering valuable insights
into the geometry of quantum state space [24]. By con-
trast, in real inner product spaces, the maximum num-
ber of equiangular lines with a fixed angle scales only as
O(d), underscoring a sharp distinction between the com-
plex and real settings [25].
Motivated by this, we investigate whether relaxing the

symmetry condition inherent in SIC-POVMs is sufficient
to achieve informational completeness. Specifically, we
examine the existence of fiducial states for information-
ally complete POVMs (IC-POVMs) without the strin-
gent symmetry constraints. If no such fiducial state exists
for an IC-POVM for special dimension d, it would imply
the non-existence of a fiducial state for a SIC-POVM,
given that SIC-POVMs are a subset of IC-POVMs with
additional symmetry properties.

Method 2 (Fiducial state for IC-POVM). If the Gram
matrix G|ϕ⟩ defined in Eq. (6) has a nonzero determi-

nant, then the d2 states generated by acting the Weyl–
Heisenberg group on the fiducial state |ϕ⟩ can form an
informationally complete POVM (IC-POVM).

This criterion was rigorously established in recent work
[26]. According to Property 1, if det

(
G|ϕ⟩

)
̸= 0, then the

set {|ϕk⟩⟨ϕk|/d}d
2−1

k=0 forms a minimal IC-POVM. The
POVM condition is satisfied because each element is nor-
malized and the set sums to the identity. Moreover, since
the set consists of d2 rank-one projectors spanning the op-
erator space, it is minimal in the sense of informational
completeness.

III. RESULTS

We are therefore interested in how the choice of |ϕ⟩
affects the structure and determinant of the Gram matrix
G|ϕ⟩.

Theorem 1 (Diagonalization of the Gram Matrix). The
complete set of eigenvectors of the d2 × d2 Gram matrix
G|ϕ⟩ is given by the tensor products of the Fourier basis
states:

|Φmn⟩ = |Fm⟩ ⊗ |Fn⟩, (11)
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where m,n = 0, . . . , d− 1, and |Fm⟩ is the m-th Fourier
transformed states defined in Eq. (1). These d2 vectors
form an orthonormal eigenbasis of G|ϕ⟩.
Each eigenvector |Φmn⟩ corresponds to the eigenvalue

λmn =

d−1∑
j=0

d−1∑
k=0

|⟨ϕ|XjZk|ϕ⟩|2 · ωmj+nk. (12)

A specified expression is provided in Eq. (B11).

The proof of this result, including the derivation of
Eq. (12), is provided in Appendix B.

This formula reveals that the eigenvalues λmn are pre-
cisely the two-dimensional discrete Fourier transform (2D
DFT) of the matrix |⟨ϕ|XjZk|ϕ⟩|2. In other words, the
Gram matrix spectrum is determined by the interference
pattern encoded in the autocorrelation structure of |ϕ⟩
under the Weyl–Heisenberg action. This structure un-
derpins the connection between the spectral properties
of the Gram matrix and the Fourier analysis on the dis-
crete phase space.

Theorem 2 (Existence of informationally complete fidu-
cial states in all dimensions). For every positive integer
d, there exists a pure state |ϕ⟩ ∈ Cd such that the Gram
matrix G|ϕ⟩, constructed from the Weyl–Heisenberg orbit
{Mα|ϕ⟩}α∈Zd×Zd

, is full rank. Consequently, this orbit
defines an informationally complete POVM (IC-POVM).

Moreover:

• For all even d, the fiducial state

|ϕ⟩ = 1√
d
(|0⟩+

d−1∑
j=1

ζj |j⟩), (13)

where ζ = e2πi/(d+1), generates an IC-POVM.

• For all odd d, the fiducial state

|ϕ⟩ = 1√
d− 1

∑
j ̸=j0

|j⟩, (14)

with any fixed j0 ∈ {0, . . . , d−1}, also generates an
IC-POVM.

The minimal eigenvalue of the associated Gram matrix
is strictly positive in both cases. For odd d, it satisfies
the asymptotic bound

λmin = 2d
(
1− cos

(π
d

))
=
π2

d
+O(d−3).

Remark 1. In the case d = 2, our analysis yields a com-
plete characterization of all fiducial states that generate
an IC-POVM via Weyl–Heisenberg orbits. Specifically,
the Gram matrix G|ϕ⟩ is full rank if and only if

b0b1 ̸= 0 and θ /∈
{
0,
π

2
, π,

3π

2

}
,

for fiducial states of the form |ϕ⟩ = b0|0⟩+ b1eiθ|1⟩. This
provides a necessary and sufficient condition, and defines
a continuous family of IC fiducials that vastly enlarges the
space compared to the two known SIC-POVM fiducials in
dimension two.

Complete proofs of Theorem 2 and the d = 2 charac-
terization are given in Appendix C.

Theorem 3 (Fiducial states that fail to achieve infor-
mational completeness). Let |ϕ⟩ ∈ Cd be a pure state,
and let G|ϕ⟩ denote the Gram matrix formed from the
Weyl–Heisenberg orbit {Mα|ϕ⟩}. Then G|ϕ⟩ is rank-
deficient—and thus the corresponding POVM is not in-
formationally complete—if |ϕ⟩ satisfies any of the follow-
ing conditions:

1. |ϕ⟩ is real-valued (i.e., all components aj ∈ R) when
the dimension d is even.

2. |ϕ⟩ = 1√
d

∑
k ak|k⟩ with each coefficient ak a root

of unity (i.e., amk

k = 1 for some mk ∈ Z+).

3. |ϕ⟩ is sparse, with at most k ≤
√
d− 3

4 +
1
2 nonzero

components.

4. |ϕ⟩ is a qudit stabilizer state.

In each case, the Gram matrix G|ϕ⟩ is not of full rank,
and hence the associated Weyl–Heisenberg orbit fails to
yield an IC-POVM.

A detailed proof is provided in Appendix D. Further-
more, in the n-qubit setting, we identify certain quantum
circuits U for which the output state |ϕ⟩ = U |0⟩⊗n fails
to generate an IC-POVM.

Theorem 4 (Representation of arbitrary quantum states
via minimal IC-POVMs by Weyl–Heisenberg orbits). Let

{|ϕα⟩}d
2−1

α=0 be the Weyl–Heisenberg orbit of a fiducial
state |ϕ⟩, forming a minimal IC-POVM by normaliza-
tion. For an unknown quantum state ρ, define the mea-
surement probabilities

pα = tr(ρ |ϕα⟩⟨ϕα|). (15)

Let G|ϕ⟩ =
∑

m,n λmn|Φmn⟩⟨Φmn| be the spectral decom-
position of the corresponding Gram matrix, with eigenval-
ues λmn and eigenvectors |Φmn⟩. Then density operator
ρ admits the following exact reconstruction:

ρ =

d2−1∑
α=0

(
d−1∑

m,n=0

λ−1
mn⟨Φmn|p⟩⟨α|Φmn⟩

)
|ϕα⟩⟨ϕα| (16)

where p = (p0, . . . , pd2−1)
T is the vector of measurement

outcomes.

A detailed proof is provided in Appendix E.
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Theorem 5 (Qudit classical shadow tomography us-
ing IC-POVMs from Weyl–Heisenberg orbits). Let

{|ϕk⟩⟨ϕk|/d}d
2−1

k=0 be a minimal IC-POVM formed from
the Weyl–Heisenberg orbit of a fiducial state |ϕ⟩, and let
G be its associated Gram matrix.

When an unknown quantum state ρ is measured and
outcome k is observed, the corresponding classical shadow
estimator in a single measurement is given by

F−1(|ϕk⟩⟨ϕk|) = d

d2−1∑
α=0

G−1
αk |ϕα⟩⟨ϕα|, (17)

where G−1 is the inverse of Gram matrix.
To estimate the expectation value tr(ρO) for an observ-

able O, define the traceless component O0 = O−tr(O)/d.
Then, the shadow norm for the variance is bounded by

∥O0∥2shadow ≤ d

λmin
tr(O2

0), (18)

where λmin denotes the smallest eigenvalue of the Gram
matrix G.

Moreover, when the state ρ is drawn randomly from
the Haar measure, the average-case variance is bounded
as

∥O0∥2average ≤
1

λmin
tr(O2

0). (19)

A detailed proof is provided in Appendix F.

Remark 2. When the observable O to be predicted ad-
mits a known decomposition over the Weyl–Heisenberg
orbit, i.e.,

O =

d2−1∑
k=0

ck |ϕk⟩⟨ϕk|,

then the classical shadow post-processing becomes ex-
tremely efficient. Specifically, the estimator satisfies

tr(F−1(|ϕk⟩⟨ϕk|) ·O) = d · ck,

meaning that the contribution of each measurement out-
come can be computed in constant time once the coeffi-
cients ck are known.
Moreover, these coefficients can be reconstructed from

the spectral data of the Gram matrix via Eq. (16),

ck =

d−1∑
m,n=0

λ−1
mn⟨Φmn|o⟩⟨k|Φmn⟩,

where o ∈ Rd2

is the vector with components oα =
tr(O |ϕα⟩⟨ϕα|).

Property 2 (Range of the minimum eigenvalue of the

Gram matrix). Let G|ϕ⟩ ∈ Cd2×d2

be the Gram matrix as-
sociated with the Weyl–Heisenberg orbit of a normalized

fiducial state |ϕ⟩ ∈ Cd. Then, the minimum eigenvalue
of G|ϕ⟩, denoted by λmin, satisfies

0 ≤ λmin ≤ d

d+ 1
.

If the orbit forms a SIC-POVM, the upper bound is
achieved.

A detailed derivation is provided in Appendix G.

Property 3 (Spectrum of the Gram matrix for
SIC-POVM). If the fiducial state |ϕ⟩ generates a SIC-
POVM through its Weyl–Heisenberg orbit, the Gram ma-
trix takes the symmetric form

G|ϕ⟩ =
1

d+ 1


d+ 1 1 · · · 1
1 d+ 1 · · · 1
...

...
. . .

...
1 1 · · · d+ 1

 . (20)

The eigenvalues of G|ϕ⟩ ∈ Cd2×d2

are:

• one eigenvalue equal to d,

• d2 − 1 eigenvalues equal to d
d+1 .

A detailed derivation is provided in Appendix H.
Therefore, the minimal eigenvalue is

λmin:SIC =
d

d+ 1
.

Substituting this into the worst-case variance bound of
classical shadow tomography gives

∥O0∥2shadow ≤ d

λmin
tr(O2

0) = (d+ 1) tr(O2
0),

which matches the performance guarantee for classical
shadows using random MUBs.

IV. NUMERICAL ANALYSIS

To complement our theoretical results, we perform nu-
merical simulations to examine the behavior of Gram
matrices associated with random fiducial states and as-
sess their potential to generate informationally complete
POVMs (IC-POVMs).
Determinant Instability in High Dimensions. Al-

though the determinant of the Gram matrix provides a
sufficient condition for informational completeness, it be-
comes numerically unstable in high dimensions due to
rapid decay. This makes it unreliable as a practical cri-
terion in large systems.
To illustrate this, we sample 1000 Haar-random pure

states |ϕ⟩ for each dimension d ∈ {4, . . . , 50}, compute
their associated Gram matrices, and record the mean de-
terminant values. As shown in Fig. 1, the determinant
decreases exponentially with increasing d, falling below
machine precision (e.g., 10−320) for d ≥ 40. This moti-
vates the use of the minimum eigenvalue as a more robust
alternative.
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FIG. 1: Mean determinants of Gram matrices for 1000
Haar-random fiducial states across dimensions d = 4 to

50.

Minimum Eigenvalue Distribution. Instead of rely-
ing on the determinant, we study the smallest eigen-
value λmin of the Gram matrix, which directly indicates
whether the matrix is full rank. According to Theorem 2,
our explicit constructions yield Gram matrices with prov-
ably positive minimum eigenvalues.

Figure 2 shows the empirical mean and standard devi-
ation of the minimum eigenvalue λmin across 1000 Haar-
random fiducial states for each dimension. The blue
curve represents the sample mean, the shaded region indi-
cates the standard deviation, and the red curve denotes
the theoretical lower bound obtained from our explicit
construction in Theorem 2.

Remarkably, the empirical means consistently lie above
the theoretical lower bound, particularly in higher dimen-
sions. This indicates that Haar-random fiducial states
are, on average, more likely to generate full-rank Gram
matrices than our deterministic constructions. In other
words, in high-dimensional settings, a randomly chosen
fiducial state has a high probability of yielding an IC-
POVM via the Weyl–Heisenberg orbit.

Interestingly, the global plot reveals apparent irregu-
larities: the sequence of mean values exhibits discontinu-
ities between even and odd dimensions. However, when
the data is separated by parity, as shown in Figs. 3, each
subsequence becomes smooth and monotonic. This sug-
gests that the spectral behavior of Gram matrices may be
influenced by structural differences tied to the parity of
d, potentially related to underlying group-theoretic prop-
erties of the Weyl–Heisenberg orbit.

Quantum State Tomography Using IC-POVMs from
Weyl–Heisenberg Orbits. We now evaluate the effec-
tiveness of using IC-POVMs constructed from Weyl–
Heisenberg orbits for quantum state tomography. Given
a fiducial state |ϕ⟩ such that the associated Gram ma-
trix is full rank (i.e., λmin > 0), we obtain a set of d2

rank-one projectors {|ϕk⟩⟨ϕk|} through Weyl–Heisenberg
group action. These form an IC-POVM by normalization
that can be used to reconstruct an unknown quantum
state ρ.
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FIG. 2: Mean and standard deviation of the minimum
eigenvalues λmin of Gram matrices for 1000

Haar-random fiducial states, over dimensions d = 4 to
50. The blue line shows the empirical mean, the shaded
region indicates the standard deviation, and the red line
marks the theoretical lower bound from Theorem 2.
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(a) Minimum eigenvalues λmin for Haar-random fiducial
states in even dimensions.
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(b) Minimum eigenvalues λmin for Haar-random fiducial
states in odd dimensions.

FIG. 3: Comparison of λmin trends for Haar-random
fiducial states across even and odd dimensions (d = 4 to
50). While both exhibit smooth decay, subtle differences
in spectral behavior emerge due to dimensional parity.
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Using the Born rule, we simulate M measurements
on ρ, where the frequency of outcome k approximates
qk ≈ tr(ρEk), with Ek = |ϕk⟩⟨ϕk|/d. Based on the mea-
sured probabilities {qk}, we employ two reconstruction
methods:

1. Linear Inversion. Using the explicit decomposi-
tion formula derived in Eq. (16), which expresses
ρ as a linear combination of projectors |ϕk⟩⟨ϕk|,
weighted by coefficients computed via the Gram
matrix spectrum.

2. Convex Optimization (SDP). Solving the fol-
lowing least-squares semidefinite program:

X̂ =argmin
X

d2−1∑
k=0

|tr(X|ϕk⟩⟨ϕk|)− qk|2 ,

subject to X ⪰ 0, tr(X) = 1.

(21)

To evaluate performance, we randomly sample 100
Haar-random pure states ρ and compute the average fi-
delity between the true and reconstructed states as a
function of the total number of measurements M . The
blue curves correspond to the linear inversion method us-
ing Eq. (16), while the red curves show the results of the
SDP-based approach.

Figure 4 illustrate the average fidelity performance for
dimensions d = 4, 8, 16, 32, respectively. In all cases, both
methods converge toward high-fidelity reconstructions as
the number of measurements increases. The SDP-based
approach exhibits better performance in the low-sample
regime due to its physicality constraints. However, when
the number of measurements becomes sufficiently large,
the linear estimator based on Eq. (16) slightly surpasses
the SDP method in fidelity, owing to its unbiased nature
and analytical structure.

Visualizing Gram Matrix Structure and Spectral Prop-
erties. To visualize and compare the spectral and struc-
tural properties of different fiducial states under Weyl–
Heisenberg orbits, we generate composite plots that in-
clude:

• the heatmap of the Gram matrix G|ϕ⟩,

• the corresponding eigenvalue magnitude matrix
(reordered into 2D form), and

• a histogram of the eigenvalue distribution.

These visualizations reveal global symmetries, spectral
concentration, and the presence or absence of small eigen-
values, which are crucial for assessing informational com-
pleteness and numerical stability in state reconstruction.

From these visualizations, we observe that the Gram
matrix G|ϕ⟩ exhibits a form of cyclic symmetry: the ma-
trix is invariant under simultaneous shifts of rows and
columns, which corresponds to the translation symmetry
of the underlying Weyl–Heisenberg group. As implied
by Eq. (8), the sum of each row or column is exactly d,
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FIG. 4: Average fidelity versus the number of
measurements for quantum state tomography using

IC-POVMs.

and consequently the largest eigenvalue of G|ϕ⟩ is always

d. Moreover, the trace of the Gram matrix equals d2,
implying that the sum of all eigenvalues is also d2.
Among the examples shown, the SIC-POVM configu-

ration exhibits the most uniform eigenvalue distribution,
consistent with its highly symmetric construction and op-
timal frame properties. This uniformity contributes to
better numerical conditioning and lower variance in ap-
plications of qudit classical shadow tomography.
Optimizing fiducial states for improved shadow per-

formance. In classical shadow tomography, the sam-
ple complexity is inversely proportional to the minimum
eigenvalue λmin of the Gram matrix. As shown in Fig. 2,
when fiducial states are chosen at random, λmin typically
decreases rapidly as the dimension d increases, leading to
significantly higher sampling costs in high-dimensional
systems.
To mitigate this effect, we formulate the following op-

timization problem: for a given dimension d, we seek a
normalized fiducial state |ϕ⟩ ∈ Cd that maximizes the
minimum eigenvalue of its associated Gram matrix G|ϕ⟩,
defined over the Weyl–Heisenberg orbit. Formally,

max
|ϕ⟩∈Cd

λmin(G|ϕ⟩) = max
|ϕ⟩∈Cd

min{λmn}m,n

subject to ⟨ϕ|ϕ⟩ = 1.

Here, the eigenvalues λmn are given explicitly by the 2D
discrete Fourier transform in Eq. (12), allowing efficient
computation.
Since the objective is highly non-convex, we adopt

large-scale gradient-based optimization using the Adam
optimizer, combined with extensive random restarts to
escape poor local minima. For each dimension d ∈
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FIG. 5: Composite visualizations of the Gram matrix
structure and spectral properties for different fiducial
states. Each row shows, from left to right: the Gram
matrix heatmap, the 2D DFT-arranged eigenvalue

matrix, and the histogram of eigenvalue distribution.
(a) SIC-POVM in d = 4, exhibiting the most uniform
eigenvalue distribution; (b) IC-POVM in d = 4 with
fiducial state in Eq. (13); (c) IC-POVM in dimension
d = 5 in Eq. (14); (d) Haar-random fiducial state in
d = 4, with less structured spectrum and broader

eigenvalue spread.

{2, . . . , 20}, we run 2500 optimization steps with a learn-
ing rate of 0.05, repeated over 3000 random initializa-
tions. The best-performing result for each dimension is
recorded.

As shown in Fig. 7, the optimized values of λmin sig-
nificantly improve over random baselines. Remarkably,
in low dimensions, these values approach the theoreti-
cal upper bound d

d+1 , corresponding to the ideal perfor-
mance of SIC-POVMs. Although our resulting orbits do
not form SIC-POVMs, they nonetheless yield comparable
sampling efficiency in classical shadow tomography.

Compared to the standard approach of construct-
ing SIC-POVMs—which requires minimizing the fourth-
moment functional to saturate Welch’s bound [Ref]—our
method is substantially simpler and more flexible. In-
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FIG. 6: Composite visualizations of the Gram matrix
structure and spectral properties for different fiducial
states. Each row shows, from left to right: the Gram
matrix heatmap, the 2D DFT-arranged eigenvalue

matrix, and the histogram of eigenvalue distribution.
(a) non-IC-POVM in d = 4 with real-valued

components; (b) non-IC-POVM in d = 4 with roots of
unity components; (c) non-IC-POVM in d = 4 with 2
zero components; (d) qudit stabilizer state in d = 4

with ϕ = 1√
10
(1, 2i, 1, 2i).

tuitively, SIC-POVM construction seeks fiducial states
whose Gram spectra are exactly {d, d

d+1 , . . . ,
d

d+1}, en-
forcing global symmetry across all eigenvalues. In con-
trast, our optimization only requires λmin = Ω(1) to
ensure efficient shadow reconstruction. This weaker re-
quirement translates to a more tractable numerical prob-
lem with fewer structural constraints.

Moreover, because the eigenvalues are analytically con-
nected to the fiducial state via a 2D discrete Fourier
transform, our objective remains differentiable and scal-
able. This enables standard optimization tools to be
effectively applied even in high-dimensional settings.
Hence, our approach achieves near-optimal shadow per-
formance with significantly lower computational and
structural overhead compared to exact SIC-POVM con-



9

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Dimension d

0.70

0.75

0.80

0.85

0.90

0.95

M
ax

 o
f M

in
 E

ig
en

va
lu

e

Maxmin Eigen
d/d+1

FIG. 7: Optimal Maximal minimal eigenvalues

structions.
Acknowledgements— This work received support

from the National Natural Science Foundation of China
through Grants No. 62001260 and No. 42330707,
and from the Beijing Natural Science Foundation under
Grant No. Z220002.



10

Appendix A: Proof of Proposition 1: Tight frame of Weyl-Heisenberg orbit

Proof. We compute the operator sum:

S :=

d−1∑
j,k=0

XjZk|ϕ⟩⟨ϕ|Z−kX−j .

Fixing j, consider the inner sum over k:

Sj :=

d−1∑
k=0

Zk|ϕ⟩⟨ϕ|Z−k.

Let |ϕ⟩ =
∑d−1

a=0 aa|a⟩. Then:

Zk|ϕ⟩ =
d−1∑
a=0

ωakaa|a⟩, where ω = e2πi/d.

Thus:

Zk|ϕ⟩⟨ϕ|Z−k =
∑
a,b

ωk(a−b)aaa
∗
b |a⟩⟨b|,

and summing over k, we get:

Sj =
∑
a,b

(
d−1∑
k=0

ωk(a−b)

)
aaa

∗
b |a⟩⟨b|.

Because:

d−1∑
k=0

ωk(a−b) =

{
d, if a = b,

0, otherwise,

it follows that:

Sj = d

d−1∑
a=0

|aa|2|a⟩⟨a|,

which is a diagonal matrix with entries proportional to the probabilities |aa|2.
Now, summing over j and applying the shift operators Xj :

S =

d−1∑
j=0

XjS0X
−j .

Since each Xj cyclically permutes the diagonal entries of S0, the full sum S uniformly distributes the diagonal weights.
Therefore:

S = d · I,

completing the proof.

Appendix B: Proof of Theorem 1: Diagonalization of the Gram Matrix

In this section, we derive the expression for the eigenvalues of the Gram matrix G|ϕ⟩ associated with the
Weyl–Heisenberg orbit of a fiducial state |ϕ⟩. Recall that the Gram matrix is defined by the inner products be-
tween all orbit elements XjZk|ϕ⟩, and its matrix elements are given by

G(j,k),(j′,k′) = ⟨ϕ|Z−kX−jXj′Zk′
|ϕ⟩ = ⟨ϕ|Xj′−jZk′−k|ϕ⟩.
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As such, G|ϕ⟩ is a d
2 × d2 circulant matrix on a two-dimensional discrete torus. It follows from standard harmonic

analysis that its eigenvectors are tensor products of Fourier basis vectors, and its eigenvalues are given by the two-
dimensional discrete Fourier transform (2D DFT) of the matrix: Pjk = |⟨ϕ|XjZk|ϕ⟩|2. Next, we give an detailed
proof.

Proof. We aim to prove that

G|ϕ⟩|Φmn⟩ = G|ϕ⟩|Fm⟩ ⊗ |Fn⟩ = λmn|Fm⟩ ⊗ |Fn⟩, (B1)

for all m,n ∈ {0, 1, · · · , d− 1}.
We first express

|Fm⟩ ⊗ |Fn⟩ =
1

d

d−1∑
s=0

d−1∑
t=0

ast|s⟩|t⟩. (B2)

Namely, ast denotes the coefficient of the basis state |s⟩|t⟩ in the expansion of |Fm⟩ ⊗ |Fn⟩, up to factor 1/d.

Since |Fm⟩ = 1√
d

∑d−1
s=0 w

sm|s⟩, we obtain

|Fm⟩ ⊗ |Fn⟩ =
1

d

d−1∑
s=0

d−1∑
t=0

ωms+nt|s⟩|t⟩,

and thus

ast = ωms+nt. (B3)

We now aim to prove

⟨j| ⊗ ⟨k|G|ϕ⟩|Fm⟩ ⊗ |Fn⟩ = λmn
1

d
ajk =

1

d
λmnω

mj+nk, (B4)

for all j, k.

As G|ϕ⟩ is Hermitian, we have G†
|ϕ⟩ = G|ϕ⟩. To compute the inner product ⟨j| ⊗ ⟨k|G|ϕ⟩|Fm⟩ ⊗ |Fn⟩, we first simplify

G|ϕ⟩|j⟩ ⊗ |k⟩.
By Eq. (7), we have

G|ϕ⟩|j⟩ ⊗ |k⟩ =
d−1∑
m1=0

d−1∑
n1=0

|⟨ϕ|(Xm1Zn1)†(XjZk)|ϕ⟩|2 · |m1n1⟩. (B5)

We now calculate the inner product between the vectors in Eq. (B5) and Eq. (11):

⟨j| ⊗ ⟨k|G|ϕ⟩|Fm⟩ ⊗ |Fn⟩ =
d−1∑
m1=0

d−1∑
n1=0

|⟨ϕ|(Xm1Zn1)†(XjZk)|ϕ⟩|2 · ⟨m1n1| ·
1

d

d−1∑
s=0

d−1∑
t=0

ωms+nt|s⟩|t⟩

=
1

d

d−1∑
m1=0

d−1∑
n1=0

|⟨ϕ|(Xm1Zn1)†(XjZk)|ϕ⟩|2 · ωmm1+nn1

=
1

d

d−1∑
m1=0

d−1∑
n1=0

|⟨ϕ|Xm1−jZn1−k|ϕ⟩|2 · ωmm1+nn1

=
1

d

d−1∑
m1=0

d−1∑
n1=0

|⟨ϕ|Xm1−jZn1−k|ϕ⟩|2 · ωm(m1−j)+n(n1−k)ωmj+nk

=
1

d

[
d−1∑
m1=0

d−1∑
n1=0

|⟨ϕ|Xm1Zn1 |ϕ⟩|2 · ωmm1+nn1

]
ωmj+nk

(B6)

Thus, we define

λmn :=

d−1∑
m1=0

d−1∑
n1=0

|⟨ϕ|Xm1Zn1 |ϕ⟩|2 · ωmm1+nn1 . (B7)

We have therefore shown that each of the d2 tensor-product vectors |Fm⟩ ⊗ |Fn⟩, constructed from the Fourier
basis, is an eigenvector of the Gram matrix G|ϕ⟩, with corresponding eigenvalue λmn.
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Lemma 1. All eigenvalues λmn of the Gram matrix in Eq. (7) can be expressed as in Eq. (B11).

Proof. For any state |ϕ⟩ =
∑d−1

k=0 ak|k⟩, we have

Zn1 |ϕ⟩ =
d−1∑
k=0

ωn1kak|k⟩ (B8)

and

X−m1 |ϕ⟩ =
d−1∑
k=0

ak|k −m1 mod d⟩ =
d−1∑
k=0

ak+m1 mod d|k⟩ (B9)

Thus we have

|⟨ϕ|Xm1Zn1 |ϕ⟩|2 =

∣∣∣∣∣∣
(

d−1∑
k=0

a⋆k+m1 mod d⟨k|

)
d−1∑
j=0

ωn1jaj |j⟩

∣∣∣∣∣∣
2

=

∣∣∣∣∣
d−1∑
k=0

aka
⋆
k+m1 mod d · ωn1k

∣∣∣∣∣
2

(B10)

From now on, we omit the notation modd in the index of coefficients for simplicity.
Then the eigenvalue λmn can be expressed as:

λmn =

d−1∑
m1=0

d−1∑
n1=0

ωm1m+n1n

∣∣∣∣∣
d−1∑
k=0

aka
⋆
k+m1

ωn1k

∣∣∣∣∣
2

(B11)

Appendix C: Proof of Theorem 2: Existence of Informationally Complete Fiducial States for Arbitrary
Dimension

1. Full Rank Criterion for d = 2

Statement 1. We consider the fiducial state of the form

|ϕ⟩ = b0|0⟩+ b1e
iθ|1⟩.

Here we prove that the Gram matrix G|ϕ⟩ is full rank if and only if

b0b1 ̸= 0 and θ /∈ {0, π/2, π, 3π/2}. (C1)

Proof. When d = 2, the root of unity is ω = −1. From Eq. (B11), we compute

λmn =

1∑
m1=0

1∑
n1=0

(−1)m1m+n1n|a⋆m1
a0 + a⋆1+m1

a1(−1)n1 |2

=

1∑
n1=0

(−1)n1n
(∣∣|a0|2 + |a1|2(−1)n1

∣∣2 + (−1)m |a⋆1a0 + a⋆0a1(−1)n1 |2
)

=
∣∣|a0|2 + |a1|2

∣∣2 + (−1)n
∣∣|a0|2 − |a1|2

∣∣2 + (−1)m|a⋆1a0 + a⋆0a1|2 + (−1)m+n|a⋆1a0 − a⋆0a1|2

=(1 + (−1)n)(|a0|4 + |a1|4) + (1− (−1)n)2|a0a1|2

+ (−1)m(1 + (−1)n)2|a0a1|2 + (−1)m(1− (−1)n)(a⋆20 a
2
1 + a20a

⋆2
1 )

(C2)

This leads to the following expressions:

λm,0 = 2
(
|a0|2 + (−1)m|a1|2

)2
= 2

(
b20 + (−1)mb21e

2iθ
)2
, (C3)

λm,1 = 2(−1)mb20b
2
1(e

iθ + (−1)me−iθ)2. (C4)
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Hence, det(G|ϕ⟩) ̸= 0 if and only if the following four expressions are not all zero:

b20 + b21e
2iθ, b20 − b21e

2iθ, b0b1(e
iθ + e−iθ), b0b1(e

iθ − e−iθ).

Note that the conditions b0b1(e
iθ + e−iθ) ̸= 0 and b0b1(e

iθ − e−iθ) ̸= 0 directly lead to the constraint in Eq. (C1).
When either of these is violated, the quantity e2iθ becomes non-real, and thus the other two expressions cannot
simultaneously vanish. Therefore, the constraint in Eq. (C1) is sufficient to ensure that G|ϕ⟩ is full rank, and the
resulting Weyl–Heisenberg orbit forms an IC-POVM.

It is well known that for d = 2, there exist exactly two fiducial states (up to global phase and Weyl–Heisenberg
equivalence) that generate a SIC-POVM. These are given by

{
1√
6

(√
3 +

√
3, eπi/4

√
3−

√
3

)
,

1√
6

(
−
√
3−

√
3, eπi/4

√
3 +

√
3

)}
.

In this work, we extend the analysis by relaxing the symmetry constraint required for SIC-POVMs and instead
explore the broader class of fiducial states that yield IC-POVMs through their Weyl–Heisenberg orbits. This general-
ization admits more flexible configurations beyond the regular tetrahedral symmetry and paves the way for systematic
investigation in higher dimensions.

2. IC Fiducial Construction for Even Dimensions

We analyze the fiducial state |ϕ⟩ = |0⟩+
∑d−1

j=1 ζ
j |j⟩, and show that all the eigenvalues {λmn} are nonzero for even

dimensions.

Statement 2. Let d be an even positive integer, and let ζ = e2πi/(d+1) be a primitive (d+1)-th root of unity. Consider
the unnormalized fiducial state

|ϕ⟩ = |0⟩+
d−1∑
t=0

ζt|t⟩.

Then the corresponding Gram matrix G|ϕ⟩ formed from the Weyl–Heisenberg orbit of |ϕ⟩ is full rank and hence the

orbit generates an IC-POVM. Moreover, all d2 eigenvalues λmn of G|ϕ⟩ are strictly positive.

Proof. We define the Kronecker delta function as

δj,k =

{
1, if j = k,

0, otherwise.

The coefficient at of the state |ϕ⟩ can thus be expressed as at = (δt,0 + 1)ζt, accounting for the special role of |0⟩ in
the unnormalized superposition.

We should notice that,

at+m1 =

{
(δt+m1,0 + 1)ζt+m1 , if 0 ≤ t ≤ d− 1−m1,

(δt+m1−d,0 + 1)ζt+m1−d, if d−m1 ≤ t ≤ d− 1.
(C5)

Here, the influence of modulo-d arithmetic is taken into consideration to reflect explicit calculations.
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Take the Eq. (C5) into the eigenvalue expression of Eq. (B11), we have

λmn

=
∑

m1,n1

ωm1m+n1n

∣∣∣∣∣∑
t

a⋆t+m1
atω

tn1

∣∣∣∣∣
2

=
∑

m1,n1

ωm1m+n1n

∣∣∣∣∣
d−1−m1∑

t=0

(δt+m1,0 + 1)ζ−t−m1(δt,0 + 1)ζtωtn1 +

d−1∑
t=d−m1

(δt+m1−d,0 + 1)ζd−m1ωtn1

∣∣∣∣∣
2

=
∑

m1,n1

ωm1m+n1n

∣∣∣∣∣
d−1−m1∑

t=0

(δt+m1,0 + 1)(δt,0 + 1)ωtn1 +

d−1∑
t=d−m1

(δt+m1−d,0 + 1)ζdωtn1

∣∣∣∣∣
2

· |ζ−m1 |2

=
∑

m1,n1

ωm1m+n1n

(
d−1−m1∑

t=0

(δt+m1,0 + 1)(δt,0 + 1)ωtn1 +

d−1∑
t=d−m1

(δt+m1−d,0 + 1)ζdωtn1

)

·

(
d−1−m1∑

s=0

(δs+m1,0 + 1)(δs,0 + 1)ω−sn1 +

d−1∑
s=d−m1

(δs+m1−d,0 + 1)ζ−dω−sn1

)
=
∑

m1,n1

ωm1m+n1n
∑

0≤t,s≤d−1−m1

(δt+m1,0 + 1)(δt,0 + 1)(δs+m1,0 + 1)(δs,0 + 1)ω(t−s)n1

+
∑

m1,n1

ωm1m+n1n
∑

d−m1≤t,s≤d−1

(δt+m1−d,0 + 1)(δs+m1−d,0 + 1)ω(t−s)n1

+
∑

m1,n1

ωm1m+n1n
∑

0≤t≤d−1−m1<s≤d−1

(δt+m1,0 + 1)(δt,0 + 1)(δs+m1−d,0 + 1)ζ−dω(t−s)n1

+
∑

m1,n1

ωm1m+n1n
∑

0≤s≤d−1−m1<t≤d−1

(δs+m1,0 + 1)(δs,0 + 1)(δt+m1−d,0 + 1)ζdω(t−s)n1

=S1 + S2 + S3 + S4

(C6)

In the following simplifications and subsequent derivations, we frequently make use of the identity

d−1∑
t=0

tωt =
d

ω − 1
. (C7)

This identity can be derived from the more general formula

b∑
t=a

txt = x

(
b∑

t=a

xt

)′

= x

(
xa − xb+1

1− x

)′

= x

(
xa − xb+1

(1− x)2
+
axa−1 − (b+ 1)xb

1− x

)
, ∀ 0 ≤ a ≤ b, x ̸= 1. (C8)

In particular, setting a = 0, b = d− 1, and x = ω yields Eq. (C7), which plays an important role in evaluating the
eigenvalues.

By detailed computation, we can obtain the following results.

S1 =2d2δm,0δn,0 + 8dδn,0 + 4d+ d

d−1−n∑
m1=0

ωm1m

+ d

n−1∑
m1=0

ωm1m + dn

n−1∑
m1=0

ωm1m − d

n−1∑
m1=0

ωm1mm1 + d

d−1−n∑
m1=0

ωm1m(d−m1 − n)

(C9)

S2 =δn,0d
d−1∑
m1=1

ωm1m + d
d−1∑

m1=n+1

ωm1m + δn,0d
d−1∑
m1=1

ωm1m

+ d

d−1∑
m1=d−n+1

ωm1m + d

d−1∑
m1=n+1

ωm1m(m1 − n) + d

d−1∑
m1=d−n+1

ωm1m(n− d+m1)

(C10)
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Let ñ := min(n, d− n).

S3 =dζ−d(1− δn,0)ω
−mn + dζ−d

d−1∑
m1=d−n

ωm1m + dζ−d
d−n∑
m1=1

ωm1m

+ dζ−d
ñ−1∑
m1=1

ωm1mm1 + dζ−d
d−ñ∑
m1=ñ

ωm1mñ+ dζ−d
d−1∑

m1=d−ñ+1

ωm1m(d−m1)

(C11)

Note that

S4 = S⋆
3 . (C12)

Our current objective is to determine whether the total expression S1 + S2 + S3 + S4, defined in Eqs. (C9), (C10),
(C11), and (C12), is nonzero in each of the following four cases: (m ̸= 0, n = 0), (m ̸= 0, n ̸= 0), (m = 0, n = 0), and
(m = 0, n ̸= 0).

Case 1: We first consider the case m ̸= 0. We have

S1 = 8dδn,0 + 4d+
d

1− ωm
(d+ 2− ω−mn − ωmn)− dωm

(1− ωm)2
(2− ωmn − ω−mn), (C13)

S2 =− 2dδn,0 +
d

1− ωm
(2ωm(n+1) + n− d− 1) +

d

(1− ωm)2
(ωm(n+2) − ωm)

+ (1− δn=0)d

(
2ωm(1−n) − n− 1

1− ωm
+

ωm

(1− ωm)2
(ωm(1−n) − 1)

)
.

(C14)

and

S3 = dζ−d

(
(2− δn=0)ω

−mn − 1 +
ωm − ωm(1−ñ)

1− ωm
+

1

(1− ωm)2
(ωm + ω2m − ωm(1+ñ) − ωm(2−ñ))

)
. (C15)

• Subcase 1: n = 0

S1 + S2 + S3 + S4

=8d+ 4d+
d2

1− ωm
− 2d+

d

1− ωm
(2ωm − d− 1) +

d

(1− ωm)2
(ω2m − ωm)

=9d > 0.

(C16)

• Subcase 2: n ̸= 0
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S1 + S2 + S3 + S4

=4d+
d

1− ωm
(d+ 2− ω−mn − ωmn)− dωm

(1− ωm)2
(2− ωmn − ω−mn)

+
d

1− ωm
(2ωm(n+1) + n− d− 1) +

d

(1− ωm)2
(ωm(n+2) − ωm)

+ d

(
2ωm(1−n) − n− 1

1− ωm
+

ωm

(1− ωm)2
(ωm(1−n) − 1)

)
+ dζ−d

(
2ω−mn − 1 +

ωm − ωm(1−ñ)

1− ωm
+

1

(1− ωm)2
(ωm + ω2m − ωm(1+ñ) − ωm(2−ñ))

)
+ dζd

(
2ωmn − 1 +

ω−m − ω−m(1−ñ)

1− ω−m
+

1

(1− ω−m)2
(ω−m + ω−2m − ω−m(1+ñ) − ω−m(2−ñ))

)
=4d+

d

1− ωm
(−ω−mn − ωmn + 2ωm(n+1) + 2ωm(1−n))

+
d

(1− ωm)2
(ωm(n+2) − 4ωm + ωm(n+1) + ωm(1−n) + ωm(2−n))

+ dζ−d

(
2ω−mn − 1 +

ωm − ωm(1−ñ)

1− ωm
+

1

(1− ωm)2
(ωm + ω2m − ωm(1+ñ) − ωm(2−ñ))

)
+ dζd

(
2ωmn − 1 +

ωmñ − 1

1− ωm
+

1

(1− ωm)2
(ωm + 1− ωm(1−ñ) − ωmñ)

)
=4d+

4d+ d(−ωmn − ω−mn)(4− (ωm + ω−m))

2− (ωm + ω−m)

+ 2d(ζ−dω−mn + ζdωmn)− d(ζd + ζ−d)

(
1 +

2− ω−mn − ωmn

2− ωm − ω−m

)

(C17)

Let ωm = eiθ and ζ = eiα. Then

(S1 + S2 + S3 + S4)/d

=4 + 4 cos (nθ + α)− 2 cosα− 2 cosnθ + (2− cosα)
1− cosnθ

1− cos θ
> 0.

(C18)

(Note that as α→ 0, the summation is 2 + 2 cosnθ + 1−cosnθ
1−cos θ > 0.)

Case 2: We then consider the case m = 0.
We have

S1 = (2d2 + 8d)δn=0 +
1

2
d3 − nd2 + dn2 +

3

2
d2 + 4d (C19)

S2 = 2δn,0d(d− 1) + d(d− n− 1)(1 +
d− n

2
) + (1− δn,0)d(n− 1)(1 +

n

2
), (C20)

and

S3 = dζ−d((1− δn,0)(d− n+ 1) + n+ nd− n2). (C21)

• Subcase 1: n = 0

S1 + S2 + S3 + S4 =(2d2 + 8d) +
1

2
d3 +

3

2
d2 + 4d+ 2d(d− 1) + d(d− 1)(1 +

d

2
)

=d3 + 6d2 + 9d = d(d+ 3)2 > 0.
(C22)
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• Subcase 2: n ̸= 0

S1 + S2 + S3 + S4

=
1

2
d3 − nd2 + dn2 +

3

2
d2 + 4d+ d(d− n− 1)(1 +

d− n

2
) + d(n− 1)(1 +

n

2
) + d(ζ−d + ζd)((d− n+ 1) + n+ nd− n2)

=d
(
d2 + 2n2 − 2dn+ 2d+ 2 + (ζd + ζ−d)(1 + d+ nd− n2)

)
(C23)

We can find that 1 + d+ nd− n2 = (n+ 1)(d+ 1− n) > 0. Since −2 < ζd + ζ−d < 2, the summation

S1 + S2 + S3 + S4 > d(d2 + 2n2 − 2dn+ 2d+ 2− 2(1 + d+ nd− n2)) = (d− 2n)2 ≥ 0. (C24)

In all four cases (m,n) ∈ {(0, 0), (0, ̸= 0), ( ̸= 0, 0), (̸= 0, ̸= 0)}, we have verified that

S1 + S2 + S3 + S4 > 0.

3. IC Fiducial Construction for Odd Dimensions

We provide a construction of a fiducial state that generates an informationally complete POVM (IC-POVM) in any
odd dimension d, and compute all eigenvalues of the resulting Gram matrix explicitly.

Statement 3. Let d be an odd positive integer. Consider the unnormalized fiducial state |ϕ⟩ ∈ Cd defined by

|ϕ⟩ =
d−1∑
j=0

(1− δj,j0)|j⟩, (C25)

where j0 ∈ {0, 1, . . . , d− 1} specifies the index at which the coefficient is zero, and all other entries are set to 1.
Then, the Gram matrix G|ϕ⟩, defined via the Weyl–Heisenberg orbit of |ϕ⟩, has full rank. Consequently, the orbit

generates an IC-POVM. Furthermore, all the eigenvalues λmn of G|ϕ⟩, as given in Eq. (B11), are strictly positive and
explicitly take the form:

λmn =


d(d− 1)2, if m = 0, n = 0;

d(d− 2)2, if m = 0, n ̸= 0;

d, if m ̸= 0, n = 0;

d (2 + ωmn + ω−mn) , if m ̸= 0, n ̸= 0.

Proof. We have

λmn

=
∑

m1,n1

ωm1m+n1n

∣∣∣∣∣∑
t

(1− δt+m1,s0)(1− δt,s0)ω
tn1

∣∣∣∣∣
2

=
∑

m1,n1

ωm1m+n1n
∣∣∣dδn1,0 − ω(s0−m1)n1 − ωs0n1 + ωs0n1δm1,0

∣∣∣2
=
∑

m1,n1

ωm1m+n1n
(
dδn1,0 − ω(s0−m1)n1 − ωs0n1 + ωs0n1δm1,0

)(
dδn1,0 − ω−(s0−m1)n1 − ω−s0n1 + ω−s0n1δm1,0

)
=
∑

m1,n1

ωm1m+n1n
(
2dδβ,0 + (d2 − 4d)δn1,0 − 3δm1,0 + ω−m1n1 + ωm1n1 + 2

)
=2d+

∑
m1

ωm1m(d2 − 4d)−
∑
n1

3ωn1n +
∑

m1,n1

ωm1m+n1n(ω−m1n1 + ωm1n1 + 2)

=2d+ d2(d− 4)δm,0 − 3dδn,0 + 2d2δm,0δn,0 + d(ωmn + ω−mn)
(C26)
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In summary, we have

λmn =


d(d− 1)2, if m = 0, n = 0;
d(d− 2)2, if m = 0, n ̸= 0;
d, if m ̸= 0, n = 0;
d(2 + ωmn + ω−mn), if m ̸= 0, n ̸= 0.

In particular, if d is odd, the sum ωmn + ω−mn > −2 for all m,n. Hence all eigenvalues λmn is nonzero.

Remark 3. In the case where d is even, the above construction fails to produce an IC-POVM. This is because there
exist indices m,n such that mn = d/2, leading to ωmn = ω−mn = −1. In this case, the corresponding eigenvalue
becomes

λmn = d(2 + ωmn + ω−mn) = d(2− 1− 1) = 0,

which causes the Gram matrix G|ϕ⟩ to be rank-deficient and thus not enough informationally complete.

Remark 4. Since d is odd, we have

min
m,n

(ωmn + ω−mn) = 2min
m,n

cos
2mn

d
π = 2 cos

(
d− 1

d
π

)
= −2 cos(π/d). (C27)

Then the minimal eigenvalue is

λmin = min
m,n

d(2 + ωmn + ω−mn) = 2d(1− cos(π/d)) = π2/d+O(d−3) (C28)

Appendix D: Proof of Theorem 3:

In this appendix, we provide the proof of Theorem 3, which characterizes several classes of fiducial states whose
Weyl–Heisenberg orbits fail to generate informationally complete POVMs. Each case is treated separately, based on
the structure of the Gram matrix and the symmetries or sparsity properties of the chosen state.

Case 1: Real-valued state in even dimension

Statement 4. Let d be an even positive integer. Then for any pure quantum state |ϕ⟩ ∈ Cd whose components are
all real, the Gram matrix G|ϕ⟩ is rank-deficient, i.e., det(G|ϕ⟩) = 0. Consequently, such a state cannot generate an
IC-POVM via the Weyl–Heisenberg group action.

More specifically, for all odd integers m ∈ {1, 3, . . . , d− 1}, we have

λm,d/2 = 0,

where λmn are the eigenvalues of G|ϕ⟩ as defined in Eq. (B11).

Proof. For each m ∈ {1, 3, . . . , d− 1}, we directly compute the corresponding eigenvalue:

λm,d/2 =
∑

m1,n1

ωmm1+dn1/2

∣∣∣∣∣∑
t

a⋆t+m1
atω

n1t

∣∣∣∣∣
2

=
∑
m1

ωmm1

[∑
t,s

at+m1
atas+m1

as

(∑
n1

ω(t−s+d/2)n1

)]
=d
∑
m1

ωmm1

∑
t−s≡d/2

asatas+m1at+m1

=d

d/2−1∑
m1=0

ωmm1

∑
s

asas+m1as+d/2as+m1+d/2 + d

d−1∑
m1=d/2

ωmm1

∑
s

asas+m1as+d/2as+m1+d/2

=d

d/2−1∑
m1=0

ωmm1

∑
s

asas+m1as+d/2as+m1+d/2 + d

d/2−1∑
m1=0

ωm(m1+d/2)
∑
s

asas+m1+d/2as+d/2as+m1

(D1)
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Since m is odd and d is even, we have ωmd/2 = −1, which implies that the total expression becomes zero:

λm,d/2 = 0.

This completes the proof.

Remark 5. This result implies that for n-qubit systems (i.e., d = 2n), in order to construct a fiducial state |ϕ⟩ such
that det(G|ϕ⟩) ̸= 0, the corresponding quantum circuit preparing |ϕ⟩ from the initial state |0⟩⊗n cannot be composed
solely of Hadamard gates, CNOT gates, and single-qubit rotations of the form Ry(θ). Such gate sets are restricted to
generating quantum states with real amplitudes. However, our result shows that when d is even, any all-real fiducial
state necessarily yields a rank-deficient Gram matrix.

Consequently, the prepared state must exhibit nontrivial relative phases between at least two computational basis
components, typically requiring gate operations that introduce complex amplitudes (e.g., phase gates or arbitrary single-
qubit unitaries with complex entries). In particular, some components must carry a relative phase of the form eiα,
where α /∈ {0, π}.

Case 2: Root-of-unity coefficients

Statement 5. Let |ϕ⟩ = 1√
d

∑d−1
k=0 ak|k⟩ ∈ Cd be a pure quantum state such that each coefficient ak is a root of unity;

that is, for each k, there exists a positive integer mk such that amk

k = 1. Then the Gram matrix G|ϕ⟩ generated by the
Weyl–Heisenberg orbit of |ϕ⟩ is rank-deficient, i.e., det(G|ϕ⟩) = 0. Hence, such a state cannot be used to construct an
IC-POVM.

Proof. We can easily prove that when m ̸= 0 and n = 0, the corresponding eigenvalues λmn all vanish, i.e., λmn = 0.

λm,0 =
∑

m1,n1

ωmm1

∣∣∣∣∣∑
t

a⋆t+m1
atω

n1t

∣∣∣∣∣
2

=
∑
m1

ωmm1

∑
t,s

a⋆t+m1
atas+m1

a⋆sdδt,s

=
∑
m1

ωmm1

∑
t

|at+m1
at|2d

=
∑
m1

ωmm1d2 = d3δm,0.

(D2)

Remark 6. This result implies that for n-qubit systems (i.e., d = 2n), n-qubit stabilizer states |ϕn⟩ with all nonzero
coefficients cannot serve as fiducial states for constructing IC-POVMs via Weyl–Heisenberg orbits. More broadly, any
state obtained by applying a Clifford circuit composed of gates such as {S, T, X, CX, CZ} to |ϕn⟩ will have components
that are roots of unity. According to the above theorem, such states result in a rank-deficient Gram matrix and hence
fail to generate an IC-POVM. Here, CX and CZ denote the controlled-X and controlled-Z operations, respectively.

Case 3: Sparse states with few nonzero components

Statement 6. Let |ϕ⟩ ∈ Cd be a vector with exactly t1 nonzero components, and let t0 = d− t1 denote the number of

zero components. If t0 > d −
√
d− 3

4 − 1
2 (equivalently, if t1 <

√
d− 3

4 + 1
2), then the Gram matrix G|ϕ⟩ associated

with the Weyl–Heisenberg orbit of |ϕ⟩ is rank-deficient. In particular, there exists some n ∈ {0, 1, . . . , d− 1} such that

λmn = 0, for all m ∈ {0, 1, . . . , d− 1}.

Consequently, such a state |ϕ⟩ cannot be used to construct an IC-POVM by Weyl-Heisenberg group.
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Proof. Assume |ϕ⟩ = (a0, · · · , ad−1)
t and ai ̸= 0 if and only if i ∈ S := {i0, i1, · · · , it1 − 1}. Then

λmn =
∑

0≤m1,n1≤d−1

ωm1m+n1n

∣∣∣∣∣∑
t∈S

a⋆t+m1
atω

tn1

∣∣∣∣∣
2

=
∑
n1

ωn1n
∑
m1

ωm1m

∣∣∣∣∣∑
t∈S

a⋆t+m1
atω

tn1

∣∣∣∣∣
2

=
∑
n1

ωn1n
∑
m1

ωm1m

(∑
t′∈S

a⋆t′+m1
at′ω

t′n1

)(∑
t∈S

at+m1
a⋆tω

−tn1

)

Write D(S) = {i− j|i, j ∈ S} ⊂ {0, 1, · · · , d−1} (if i− j < 0 we choose the integer m ∈ {0, 1, · · · , d−1} s.t. m ≡ i− j
(mod d)). Note that the above summation can be written as follows

λmn =
∑
n1

ωn1n
∑

t∈D(S)

ctω
tn1

=
∑

t∈D(S)

ct
∑
n1

ωn1(n−t)

here ct ∈ C are coefficients independent of n1. Since
∑

n1
ωtn1 ̸= 0 if and only if ωt = 1, the summation λmn = 0 if

n /∈ D(S). One can find that the cardinality |D(S)| ≤ 2
(
t1
2

)
+ 1 = t21 − t1 + 1. Hence,

|D(S)| ≤ t21 − t1 + 1 < |{0, 1, · · · , d− 1}| = d (D3)

ensure that there exists n ∈ {0, 1, · · · , d− 1}\D(S) s.t., λmn = 0 for all m ∈ {0, 1, · · · , d− 1}.

Remark 7. The above statement establishes a necessary condition for a quantum state |ϕ⟩ ∈ Cd to generate an
IC-POVM via its Weyl–Heisenberg orbit: the number of nonzero components t1 must satisfy

t1 ≥
√
d− 3

4
+

1

2
,

which is obtained by Eq. (D3). Equivalently, if the number of vanishing components t0 = d−t1 exceeds d−
√
d− 3

4−
1
2 ,

the Gram matrix G|ϕ⟩ is rank-deficient, and the orbit fails to yield an IC-POVM.
This constraint has direct implications for common classes of quantum states. For instance, in n-qubit systems

(d = 2n), stabilizer states have support on t1 = 2k computational basis states for some 0 ≤ k ≤ n. To satisfy the
above inequality, one must have

2k ≥
√
2n − 3

4
+

1

2
,

which asymptotically requires k ≥ ⌈n+1
2 ⌉. In particular, stabilizer states with small support cannot generate IC-

POVMs.
Furthermore, widely studied entangled states such as the Greenberger–Horne–Zeilinger (GHZ) state and the W

state also fail to meet the condition: the GHZ state has only two nonzero components, and the W state has n nonzero
components. Both are below the threshold for all n ≥ 1, and hence cannot serve as fiducial states for constructing
IC-POVMs through Weyl–Heisenberg group action.

Combining Statement 5, this implies that the exponent k in the n-qubit stabilizer support size must lie within the
range ⌈n+1

2 ⌉, · · · , n− 1 in order for the state to potentially yield a full-rank Gram matrix.

Case 4: Qudit stabilizer states

In a d-dimensional Hilbert space, qudit stabilizer states are defined as the common +1 eigenstates of a maximal
abelian subgroup of the Weyl–Heisenberg group. Equivalently, they can be characterized as the orbit of the computa-
tional basis state |0⟩ under the action of the Clifford group, which is the normalizer of the Weyl–Heisenberg group in
the unitary group U(d). This construction generalizes the well-known Pauli–Clifford stabilizer formalism from qubit
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systems (d = 2) to arbitrary finite dimensions, and plays a central role in non-binary quantum error correction and
many-body quantum systems.

Despite their widespread usefulness, we show that such stabilizer states are intrinsically unsuitable for constructing
informationally complete POVMs: for any d, the Gram matrix G|ϕ⟩ associated with the Weyl–Heisenberg orbit of a
stabilizer state |ϕ⟩ is necessarily rank-deficient, i.e., det(G|ϕ⟩) = 0. This implies that the orbit cannot span the full
operator space and thus fails to form an informationally complete POVM (IC-POVM).

Statement 7. Let |ϕ⟩ be any stabilizer state in a d-dimensional Hilbert space, defined as the common +1 eigenstate
of a maximal abelian subgroup of the Weyl–Heisenberg group. Then the Gram matrix G|ϕ⟩, constructed from the
Weyl–Heisenberg orbit of |ϕ⟩, is always rank-deficient. In particular,

det(G|ϕ⟩) = 0,

and the orbit cannot form an informationally complete POVM (IC-POVM).

Proof. Let |ϕ⟩ = U |0⟩ be a stabilizer state, where U is a Clifford unitary.

The Gram matrix G|ϕ⟩ ∈ Rd2×d2

is defined by

G|ϕ⟩(α, β) = |⟨ϕ|D†
αDβ |ϕ⟩|2,

where Dα = XjαZkα denotes a Weyl–Heisenberg displacement operator, indexed by α = (jα, kα) ∈ Z2
d.

Substituting |ϕ⟩ = U |0⟩ and using the fact that Clifford unitaries conjugate Weyl–Heisenberg operators into other
Weyl–Heisenberg operators (i.e., U†DαU = D′

α ∈ WH), we obtain

G|ϕ⟩(α, β) = |⟨0|D′
α
†D′

β |0⟩|2.

Thus, G|ϕ⟩ is unitarily equivalent to G|0⟩, up to a relabeling of the indices. That is, the eigenvalues of G|ϕ⟩ and G|0⟩
are identical.

Now observe that the fiducial state |0⟩ has only one nonzero component in the computational basis. According

to Statement 6, any quantum state with fewer than
√
d− 3

4 + 1
2 nonzero entries cannot generate an informationally

complete POVM via the Weyl–Heisenberg orbit. Therefore, G|0⟩ is necessarily rank-deficient, implying det(G|0⟩) = 0,
and hence also det(G|ϕ⟩) = 0.
We conclude that stabilizer states cannot be used to construct IC-POVMs via Weyl–Heisenberg orbits.

Appendix E: Proof of Theorem 4: Reconstruction from IC-POVMs by Weyl-Heisenberg orbit

Proof. Since the set {|ϕα⟩⟨ϕα|} forms an informationally complete frame, any density matrix ρ can be expanded as

ρ =

d2−1∑
α=0

aα|ϕα⟩⟨ϕα| (E1)

for some coefficients {aα}.
Taking the trace with |ϕβ⟩⟨ϕβ | on both sides yields the linear system

pβ =

d2−1∑
α=0

G|ϕ⟩[β, α] aα, (E2)

where pβ = tr(ρ|ϕβ⟩⟨ϕβ |) is the measurement probability, and G|ϕ⟩[β, α] = |⟨ϕβ |ϕα⟩|2 is the Gram matrix element.
Since G|ϕ⟩ is Hermitian and admits a full spectral decomposition

G|ϕ⟩ =

d−1∑
m,n=0

λmn|Φmn⟩⟨Φmn|,

with strictly positive eigenvalues λmn > 0, it is invertible. Thus, the coefficients are given by

a = G−1
|ϕ⟩p =

d−1∑
m,n=0

λ−1
mn⟨Φmn|p⟩|Φmn⟩, (E3)

where p = (p0, p1, . . . , pd2−1)
T and ⟨Φmn|p⟩ denotes the standard inner product.

Substituting the solved coefficients {aα} into the expansion of ρ yields the desired reconstruction formula.
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Appendix F: Proof of Classical Shadow Tomography Results

This appendix provides a complete derivation of the classical shadow tomography procedure using IC-POVMs
generated by Weyl–Heisenberg orbits. We present the inverse channel construction, variance expressions, and both
worst-case and average-case bounds.

1. Inverse Channel Construction

The quantum channel corresponding for the measurement is

F (ρ) =

d2−1∑
k=0

tr

(
1

d
|ϕk⟩⟨ϕk|ρ

)
|ϕk⟩⟨ϕk|. (F1)

We expand ρ =
∑

α aα|ϕα⟩⟨ϕα|. Applying the channel F to ρ gives

F (ρ) =

d2−1∑
k=0

tr

(
1

d
|ϕk⟩⟨ϕk|ρ

)
|ϕk⟩⟨ϕk|

=
1

d

d2−1∑
k=0

tr

|ϕk⟩⟨ϕk|
d2−1∑
α=0

aα|ϕα⟩⟨ϕα|

 |ϕk⟩⟨ϕk|

=
1

d

d2−1∑
k=0

d2−1∑
α=0

aα tr (|ϕk⟩⟨ϕk||ϕα⟩⟨ϕα|)

 |ϕk⟩⟨ϕk|

=
1

d

d2−1∑
k=0

d2−1∑
α=0

aα|⟨ϕk|ϕα⟩|2
 |ϕk⟩⟨ϕk|.

(F2)

This implies the coefficient relation:

b =
1

d
Ga, (F3)

where b and a are the coefficient vectors of F (ρ) and ρ under basis {|ϕk⟩⟨ϕk|} respectively, and Gkα = |⟨ϕk|ϕα⟩|2 is
the Gram matrix.

Since G is invertible, we solve

a = dG−1b. (F4)

Thus, the inverse channel acting on a single outcome is:

F−1(|ϕk⟩⟨ϕk|) = d

d2−1∑
α=0

G−1
αk |ϕα⟩⟨ϕα|. (F5)

To estimate the expectation value of an observable O using classical shadows, it is essential to characterize the
variance, which determines the required sample number of measurements.

2. Variance Expression and Worst-Case Bound

Given an unknown state σ, the variance is linearly related to

∥O0∥2σ =

d2−1∑
k=0

(
tr
(
F−1(|ϕk⟩⟨ϕk|)O0

))2
tr

(
|ϕk⟩⟨ϕk|

d
σ

)
, (F6)

where O0 = O − tr(O)
d I denotes the traceless part of the observable.
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By Eq. (F2), we have that the quantum channel F is represented as [F ] = 1
dG under the basis {|ϕk⟩⟨ϕk|}. Con-

sequently, the inverse channel F−1 satisfies [F−1] = dG−1. Since G is Hermitian and positive definite (due to the
informational completeness of the POVM), its inverse G−1 is also Hermitian and positive definite. Therefore, the
channel F−1 is a Hermitian superoperator when viewed in this basis. Equivalently, using the self-adjoint property of
F−1, we can also write

∥O0∥2σ =

d2−1∑
k=0

(
tr
(
F−1(O0)|ϕk⟩⟨ϕk|

))2
tr

(
|ϕk⟩⟨ϕk|

d
σ

)
. (F7)

Given an observable O, we expand its traceless part O0 = O − tr(O)/d as

O0 =

d2−1∑
k=0

ck|ϕk⟩⟨ϕk|. (F8)

We know F−1 is a linear operation. Starting from the expansion of F−1(O0) in the {|ϕα⟩⟨ϕα|} basis by Eq. (17):

F−1(O0) = d

d2−1∑
α=0

d2−1∑
k=0

(G−1)αkck

 |ϕα⟩⟨ϕα|, (F9)

we substitute this into the expression:

tr(F−1(O0)|ϕk⟩⟨ϕk|) = d

d2−1∑
α=0

d2−1∑
j=0

(G−1)αjcj

 tr(|ϕα⟩⟨ϕα||ϕk⟩⟨ϕk|)

= d

d2−1∑
α=0

d2−1∑
j=0

(G−1)αjcj

 |⟨ϕα|ϕk⟩|2.

(F10)

Introducing the Gram matrix G with entries Gαk = |⟨ϕα|ϕk⟩|2, we can write:

tr(F−1(O0)|ϕk⟩⟨ϕk|) = d

d2−1∑
j=0

cj

d2−1∑
α=0

(G−1)αjGαk

 . (F11)

Since G−1G = I, we find

d2−1∑
α=0

(G−1)αjGαk = δjk. (F12)

Thus, the expression simplifies to

tr(F−1(O0)|ϕk⟩⟨ϕk|) = d× ck. (F13)

Consequently, we have (
tr(F−1(O0)|ϕk⟩⟨ϕk|)

)2
= d2c2k. (F14)

Substituting the above formula, we have

∥O0∥2σ = d2
d2−1∑
k=0

c2k tr

(
|ϕk⟩⟨ϕk|

d
σ

)
. (F15)

We have tr(|ϕk⟩⟨ϕk|σ) ≤ 1 for all quantum state σ. Therefore,

∥O0∥2shadow ≤ d ·
d2−1∑
k=0

c2k. (F16)
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3. Connecting Worst-Case Variance to Gram Matrix Spectrum

Recall that we have the decomposition of O0 in the {|ϕk⟩⟨ϕk|} basis:

O0 =

d2−1∑
α=0

cα|ϕα⟩⟨ϕα|.

Thus, the squared Hilbert-Schmidt norm of O0 reads

tr(O2
0) =

∑
α,β

cαcβ tr (|ϕα⟩⟨ϕα||ϕβ⟩⟨ϕβ |) =
∑
α,β

cαcβ |⟨ϕα|ϕβ⟩|2 = c⊤Gc. (F17)

If the minimal eigenvalue of G are bounded by λmin, then we have G ≥ λminI. By Eq. (F17), we have

tr(O2
0) ≥ λmin

d2−1∑
k=0

c2k, (F18)

which implies

d2−1∑
k=0

c2k ≤ 1

λmin
tr(O2

0). (F19)

Then by Eq. (F16), we have

∥O0∥2shadow ≤ d

λmin
tr(O2

0). (F20)

4. Average-Case Variance Bound

Given an unknown input state σ, we consider the average-case scenario by taking σ = I
d , i.e., the maximally mixed

state.
Starting from the definition, the shadow norm is

∥O0∥2σ =

d2−1∑
k=0

(
tr
(
F−1(O0)|ϕk⟩⟨ϕk|

))2
tr

(
|ϕk⟩⟨ϕk|

d
σ

)
. (F21)

Substituting σ = I
d , we have

tr

(
|ϕk⟩⟨ϕk|

d
σ

)
=

1

d
tr

(
|ϕk⟩⟨ϕk|

d

)
=

1

d2
.

Thus, the average-case shadow norm becomes

∥O0∥2average =
1

d2

d2−1∑
k=0

(
tr
(
F−1(O0)|ϕk⟩⟨ϕk|

))2
. (F22)

Using Eq. (F14), we substitute into the expression and obtain

∥O0∥2average =
1

d2

d2−1∑
k=0

d2c2k

=

d2−1∑
k=0

c2k ≤ 1

λmin
tr(O2

0).

(F23)
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Appendix G: Eigenvalue Bounds of the Gram Matrix

We provide the derivation of the spectral bounds presented in Property 2.
First, by definition, the eigenvalues λm,n of the Gram matrix satisfy

λm,n =

d−1∑
j,k=0

|⟨ϕ|XjZk|ϕ⟩|2 · ωmj+nk,

where ω = e2πi/d. This is precisely the 2D discrete Fourier transform of the squared overlaps.
Note that the trace of the Gram matrix G|ϕ⟩ is simply the sum of all diagonal elements, each equal to 1:

tr(G|ϕ⟩) =

d2−1∑
k=0

⟨ϕk|ϕk⟩ = d2.

Therefore, the sum of all eigenvalues is also d2.
Furthermore, the component λ0,0 satisfies

λ0,0 =
∑
j,k

|⟨ϕ|XjZk|ϕ⟩|2 = d.

It is because that the Weyl–Heisenberg orbit forms a tight frame with frame constant d.
Hence, the maximal possible value of λmin under the constraint

∑
m,n λm,n = d2, with one known eigenvalue being

d, is achieved when all other d2 − 1 eigenvalues are equal:

λmin ≤ d2 − d

d2 − 1
=

d

d+ 1
.

In summary, the minimum eigenvalue λmin of the Gram matrix satisfies

0 ≤ λmin ≤ d

d+ 1
,

where both bounds are tight. The upper bound is attained when the fiducial state generates a SIC-POVM. Our
numerical analysis reveals that even non-SIC fiducial states can saturate this upper bound, offering a new perspective
on the spectral behavior of approximate constructions. On the other hand, the lower bound λmin = 0 occurs precisely
when the Weyl–Heisenberg orbit fails to form an informationally complete POVM.

Appendix H: Eigenvalue Structure of the Gram Matrix for SIC-POVMs

Let {|ϕk⟩}d
2

k=1 be a symmetric informationally complete set of pure states (SIC-POVM) in a Hilbert space of
dimension d. These states satisfy the following inner product condition:

|⟨ϕj |ϕk⟩|2 =

{
1, if j = k,
1

d+1 , if j ̸= k.

Let G ∈ Rd2×d2

denote the Gram matrix of squared inner products:

Gjk = |⟨ϕj |ϕk⟩|2.

Then G takes the following form:

G =

(
1− 1

d+ 1

)
Id2 +

1

d+ 1
1,

where 1 ∈ Rd2×d2

is the all-ones matrix, and Id2 is the identity.
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This is a classic form of a rank-one perturbation of a scalar matrix, and its eigenvalues can be computed explicitly:
The all-ones matrix 1 has eigenvalue d2 corresponding to the eigenvector v = (1, 1, . . . , 1)⊤, and 0 for all orthogonal
directions. Therefore, the Gram matrix G has the following eigenvalue structure: One eigenvalue:

λ1 =

(
1− 1

d+ 1

)
+

d2

d+ 1
= d,

and the remaining d2 − 1 eigenvalues:

λmin =

(
1− 1

d+ 1

)
=

d

d+ 1
.

Hence, the full spectrum of G is:

Spec(G) =
{
d,

d

d+ 1
, . . . ,

d

d+ 1

}
,

with multiplicities 1 and d2 − 1, respectively. In particular, the smallest eigenvalue is

λmin =
d

d+ 1
.

This spectral property plays a key role in minimizing variance in classical shadow tomography using SIC-POVMs.
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