
ERROR TERM IN THE COHEN-LENSTRA HEURISTIC VIA RANDOM

MATRIX APPROACH

YUE XU AND XIUWU ZHU

Abstract. The Cohen-Lenstra heuristic predicts the distribution of ideal class groups over number

fields. Random matrix models provide a natural framework for explaining this heuristic, and recent

results demonstrate the effectiveness of these tools. In this paper, we extend the analysis of the
random matrix model to examine the error term in the Cohen-Lenstra heuristic. Additionally, we

derive the asymptotic distribution of the corank of random matrices over finite fields, which can be
modeled as a special class of Markov chains.

1. Introduction

1.1. Cohen-Lenstra heuristic. The Cohen-Lenstra-Martinet heuristics [4, 28] predict that for a
family of number field extensions over a fixed base field, the distribution of ideal class groups is
inversely proportional to the complexity of the algebraic structures of these groups, particularly the
size of their automorphism groups. For example, Z/9Z is expected to occur more frequently as a class
group than (Z/3Z)2.

In this paper, we focus on quadratic fields, following Cohen and Lenstra’s original formulation [3].

Let D be a fundamental discriminant and Cl(D) the ideal class group of Q(
√
D). For any odd prime

p and finite abelian p-group G, they conjectured:

lim
X→∞

#{0 < ±D < X : Cl(D)[p∞] ≃ G}
#{0 < ±D < X} =

η∞(p)/ηu±(p)

|G|u± |Aut(G)| ,

where u+ = 1, u− = 0, and ηi(p) =
∏i

j=1(1− p−j) for i = 0, 1, . . . ,∞. As a corollary,∑
0<±D<X

|Cl(D)[p]| ∼ C±
∑

1<±D<X

1 ∼ C ′
±X as X → ∞

for constants C± and C ′
±. Davenport and Heilbronn [5] established the p = 3 case in 1971 with

C+ = 4/3, C− = 2. For general p, recent work [18, equation (1.14)] shows that for any ϵ > 0,∑
0<±D<X

|Cl(D)[p]| ≪p,ϵ X
3
2−

1
p+1+ϵ,

which remains far from the conjectured result.
For the 2-part of Cl(D), Gauss’s genus theory and the Hardy-Ramanujan theorem [14] imply that

dimF2
Cl(D)[2] grows like log log |D|. Consequently, the 2-torsion subgroup is of density zero as |D|
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increases. Gerth [12] extended the conjecture to finite abelian 2-groups G:

lim
X→∞

#{0 < ±D < X : 2Cl(D)[2∞] ≃ G}
#{0 < ±D < X} =

η∞(2)/ηu±(2)

|G|u± |Aut(G)| .

Smith [24] proved this for imaginary quadratic fields in 2017, and recently extended these results to
ℓ∞-class groups of cyclic ℓ-extensions over general base fields excluding 2ℓ-th roots of unity [26, 25].

We now examine the error term in the Cohen-Lenstra heuristic.

1.2. Error term and random matrix model. The counting of fundamental discriminants is well-
understood (for example, see [6, equation (16)]):

#{0 < ±D < X} =
3

π2
X +O(X1/2).

For any finite abelian p-group G, define the error term:

E±,p(G,X) := #{0 < ±D < X : Cl(D)[p∞] ≃ G} − η∞(p)/ηu±(p)

|G|u± |Aut(G)| ·
3

π2
X.

Smith’s work [26, 25] established the bound:

E±,2(G,X) ≪ X exp
(
−c · (log log logX)1/2

)
,

which naturally raises several questions about the error term’s behavior:

Question 1. Does E±,p(G,X) admit a power-saving bound (i.e., O(Xθ) for some θ < 1)? If so, does
θ depend on G or p; moreover, can we determine an explicit main term for E±,p(G,X) as X → ∞?

For a function f defined on all finite abelian p-groups, define the f -average error:

E±,p(f,X) :=
∑
G

f(G) · E±,p(G,X).

Question 2. Do the error terms E±,p(f,X) share the same properties as in Question 1?

For the case p = 3 and f(G) = |G[3]|, Bhargava, Taniguchi, and Thorne [2] refined the Davenport-
Heilbronn results, proving the existence of constants B± such that for any ϵ > 0:

E±,3(|G[3]|, X) = B±X
5/6 +O(X2/3+ϵ).

For general p, taking f = 1{G: G nontrivial} (the indicator function for nontrivial groups), based on
numerical experiments, Lewis and Williams [20] conjectured that

E+,p(1{G: G nontrivial}, X) ∼ CpX
sp ,

where Cp depends on p, and sp (potentially consistent across odd primes) appears to lie between 0.7
and 0.8.

In subfigures (a)-(d) of Figure 1, the prime p is set to 3, 5, 7, and 11, and the elementary divisors
of the p-group G are [1], [p], [p2], and [p, p], which correspond to G ≃ 0, Z/pZ, Z/p2Z, and (Z/pZ)2,
respectively. We plot the ratios log |E−,p(G,X)|/ logX as X (the bound on the absolute discriminant
of imaginary quadratic fields) increases.
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Figure 1. Plots of log |E−,p(G,X)|/ logX for varying negative discriminant bounds
and p = 3, 5, 7, 11

Our numerical experiments for imaginary quadratic fields with p = 3, 5, 7, 11 and |D| < 108 reveal
that as X grows:

the ratio
log |E−,p(G,X)|

logX
exhibits clear convergence, with a limit greater than 1/4.

Remark 3. While the numerical experiments provide limited evidence for error term predictions in
2∞-class groups, the Cohen-Lenstra heuristic for Selmer groups of quadratic twists of an elliptic curve
E offers an illuminating parallel. As noted in [26, Remark 1.3], in this analogous setting, the error
term corresponds to twisted curves Ed of Mordell-Weil rank greater than 1 and is conjectured to be
O(X3/4+ϵ) for any ϵ > 0 when |d| ≤ X.

We now consider the interpretation of the Cohen-Lenstra heuristic through random matrix models,
which will allow us to analyze the error term more precisely.

The connection to random matrices was first established by Friedman and Washington [7] for func-
tion fields. Following [29, 27], we review how the p-class group arises as the cokernel of a random

matrix. Let S be a finite set of primes in Q(
√
D) generating Cl(D), with O×

S the S-unit group and IS
the group of fractional ideals generated by S. This gives the exact sequence:

O×
S ⊗ Zp → IS ⊗ Zp → Cl(D)[p∞] → 0.
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Here, IS ⊗ Zp (respectively O×
S ⊗ Zp) is a free Zp-module of rank n := |S| (respectively n + u±),

allowing us to express Cl(D)[p∞] as coker MD for some matrix MD ∈ Matn×(n+u±)(Zp).
Crucially, the matrix size n ≥ dimF2

Cl(D)[2] grows asymptotically as log log |D|, and thus increases
with |D| and X. If we model MD as random in this limit, we obtain the correspondence:

(∗) #{0 < ±D < X : Cl(D)[p∞] ≃ G}
#{0 < ±D < X} ↭ µ

(
{M ∈ Matn×(n+u±)(Zp) : coker M ≃ G}

)
,

where µ is the normalized Haar measure on Matn×(n+u±)(Zp). This leads to the Cohen-Lenstra
distribution through the key result [7, 29]:

lim
n→∞

µ
(
{M ∈ Matn×(n+m)(Zp) : coker M ≃ G}

)
=

η∞(p)/ηm(p)

|G|m|Aut(G)| .

In this paper, we establish the following refined version of the random matrix model distribution:

Theorem 4. For a prime p and integer m ≥ 0, consider the normalized Haar measure µ on Matn×(n+m)(Zp).
Then for any finite abelian p-group G,

µ
(
{M ∈ Matn×(n+m)(Zp) : coker M ≃ G}

)
= wm(G) + λm(G)p−n +O(p−2n),

where

wm(G) =
η∞(p)/ηm(p)

|G|m|Aut(G)| , λm(G) =
wm(G)(1 + p−m − prkp(G))

p− 1
.

The implicit constant is at most
(
ηm(p)2/η∞(p)2 − 1

)1/2
.

Remark 5. The proof technique actually yields higher-order expansions when needed.

For further discussion on the application of this random matrix model, we need to fix a method for
choosing S, that is, choosing the primes that generate Cl(D). Let T (D) be the smallest value such
that the collection of all prime ideals with norm ≤ T (D) generates Cl(D). We take S to be this specific
set of prime ideals. By the prime number theorem for number fields, we have the asymptotic relation:

n = |S| ≍ T (D)

log T (D)
.

Consider the correspondence (∗). Multiplying both sides by #{0 < ±D < X} and subtracting the
main term wu±(G) · 3

π2X, we find that E±,p(G,X) corresponds to:

µ
(
{M ∈ Matn×(n+u±)(Zp) : coker M ≃ G}

)
·#{0 < ±D < X} − wu±(G) · 3

π2
X

= wm(G)O(X1/4+ϵ) + λm(G)p−n 3

π2
X + λm(G)O(p−nX1/4+ϵ) +O(p−2nX).

Here we use the conjectural error bound #{0 < ±D < X} = 3
π2X + O(X1/4+ϵ) from [22, Remark

1.1]. The dominant contribution to E±,p(G,X) comes from comparing two terms: the error term

O(wu±(G)X1/4+ϵ) from discriminant counting, and the secondary term λu±(G)p−n · 3
π2X from the

matrix model. The larger of these two terms will dominate.
To analyze the behavior of X/pn, we must consider the growth of T (D). Current results in [15]

show T (D) ≪ (logD)2. Furthermore, [1] suggests that on average, T (D) may grow more slowly: ”It
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even looks plausible that the average value of T (D) as D increases is O((logD)1+ϵ) for any ϵ > 0”.
This implies:

1

#{0 < ±D < X}
∑

0<±D<X

T (D) ≪ (logX)1+ϵ.

Thus the average value of n ≍ T (D)
log T (D) is likely of size o((logX)1+ϵ) for any ϵ > 0, suggesting that

X/pn behaves essentially like a power-saving term.
Combining these analytic and heuristic considerations, we arrive at the following refined conjec-

ture: For every prime p and any finite abelian p-group G, there exist explicit constants B±,p(G) and
exponents θ±,p(G) > 1

4 such that the error term satisfies:

E±,p(G,X) ∼ B±,p(G)Xθ±,p(G) as X → ∞.

This conjecture naturally combines predictions from random matrix theory with established number-
theoretic and numerical evidence.

1.3. Random matrices over finite fields. The cokernel distribution of p-adic matrices is closely
related to the corank distribution of random matrices over finite fields. These distributions play a
significant role in number theory, particularly in the Cohen-Lenstra conjecture for ideal class groups
and Selmer groups [24, 17], with additional applications in coding theory (cf. [9]).

In this paper, we investigate several arithmetically significant random matrix models over finite
fields, including uniform, symmetric, and skew-symmetric cases. These corank distributions share a
key feature: they form reversible Markov chains with compactness properties. Consequently, analyzing
their asymptotic behavior reduces to studying the convergence rates of the associated Markov chains.

For such chains, exponential convergence occurs precisely when certain drift conditions are satis-
fied [10], with the convergence rate determined by the largest absolute value of non-one eigenvalues
in the transition matrix [21]. Our approach treats these transition matrices as compact operators on
separable Hilbert spaces. Using q-series techniques, we determine their complete spectra and apply
the spectral theorem to obtain detailed asymptotic behavior at all orders.

Let P be the transition matrix of an irreducible, aperiodic Markov chain on a countable set I,
reversible with respect to π (i.e., π(i)P (i, j) = π(j)P (j, i) for all i, j ∈ I). We work in the Hilbert
space ℓ2(π) of complex-valued sequences µ = (µ(i))i∈I , equipped with the inner product and norm:

⟨µ, ν⟩π :=
∑
i∈I

µ(i)ν(i)

π(i)
, ∥µ∥π := ⟨µ, µ⟩1/2π .

In this framework, P acts as a bounded, self-adjoint linear operator on ℓ2(π) via P · µ := µP .

Let q be a prime power and m ≥ 0 a non-negative integer. We consider the random variables
{Xn,m}n≥1 : Matn×(n+m)(Fq) → Z≥0 defined by M 7→ corankM := n − rankM . Following [13], we
have

Prob (Xn,m = i) = (δ0P
n
m)(i),

where δ0 = (1, 0, 0, . . . ) and the transition matrix Pm is given by

Pm(i, j) =


q−1−2i−m, if j = i+ 1,

1− (1− q−i)(1− q−m−i)− q−1−2i−m, if j = i,

(1− q−i)(1− q−m−i), if j = i− 1,

0, otherwise.
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The matrix Pm is irreducible, aperiodic, and reversible with respect to the stationary distribution πm,
where

πm(i) =
η∞(q)

qi(i+m)ηi(q)ηi+m(q)
.

We analyze the spectral properties of Pm and prove the following theorem.

Theorem 6. The operator Pm is compact on ℓ2(πm), with eigenvalues
{
q−k : k ≥ 0

}
.

The eigenspaces for each eigenvalue can be explicitly constructed. Moreover, the theorem remains
valid for real q > 1 and m > −1, with the corresponding transition matrix.

Applying the spectral theorem (Theorem 11), we obtain the following convergence result, which
improves the main theorem in [9] (see Remark 16).

Corollary 7. Let q be a prime power and m ≥ 0 an integer. Then

∞∑
i=0

∣∣Prob (corank M = i | M ∈ Matn×(n+m)(Fq)
)
− πm(i)

∣∣ = 2πm(0)

(q − 1)qm
· 1

qn
+O

(
1

q2n

)
,

where the implicit constant is bounded by (πm(0)−2 − 1)1/2.

The asymptotic expansion can also be extended to higher-order terms of q−kn for k ≥ 2.
In section 4, we study other matrix spaces, including symmetric, skew-symmetric, and Hermitian

matrices following [9]. The spectra of their associated transition operators are as follows.

Theorem 8. Let Psym (resp. Palt, Qalt, PHer) denote the transition matrix for symmetric (resp.
alternating-1, alternating-2, Hermitian) n× n matrices, analogous to Pm. Then:

(1) Psym is compact on ℓ2(πsym), with eigenvalues {±q−k : k ≥ 0}\{−1}.
(2) Palt (resp. Qalt) is compact on ℓ2(πalt) (resp. ℓ2(π′

alt)), with eigenvalues {q−2k : k ≥ 0}.
(3) PHer is compact on ℓ2(πHer), with eigenvalues {(−q)−k : k ≥ 0}.
These spectral results yield analogous asymptotic expansions for the corank distributions, providing

sharp convergence rates.

Acknowledgements. The authors thank Ye Tian and Jinzhao Pan for helpful comments. They
also thank anonymous referees for valuable suggestions. The authors thank Peigen Li for helpful
discussions and Beijing Institute of Mathematical Sciences and Applications for its support. The first
author was partially supported by the Fundamental Research Funds for the Central Universities (Grant
No. XJSJ25010) and the Xiaomi Young Scholar Program.

2. Spectral theorem on reversible Markov chain

Let P be a transition matrix defined on a countable set I. Assume that P is irreducible and
aperiodic, and that P has a unique stationary distribution denoted by π. According to the basic limit
theorem, we have

∥µPn − π∥tv → 0, as n → ∞,

for any nonzero initial distribution µ. Here, the modified total variation distance (without the factor
1/2) between two distributions µ1 and µ2 is defined as follows:

∥µ1 − µ2∥tv :=
∑
i∈I

|µ1(i)− µ2(i)|.
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A natural question is how fast µPn converges to π. Under certain drift conditions (see [10] for details),
the convergence rate is generally exponential. Can we derive an explicit asymptotic estimate of the
convergence rate for specific P?

2.1. Reversible Markov chain. Further assume that P is reversible with respect to π, i.e., π(j)P (j, i) =
π(i)P (i, j) for any i, j ∈ I. Since P is irreducible, π(i) > 0 for all i. We define the Hilbert space ℓ2(π)
of complex-valued sequences as follows:

ℓ2(π) =

{
µ = (· · · , µ(i), · · · ) ∈ CI

∣∣∣∣ ∑
i∈I

|µ(i)|2
π(i)

< ∞
}
.

The inner product and norm on ℓ2(π) are defined as follows:

⟨µ, ν⟩π :=
∑
i∈I

µ(i)ν(i)

π(i)
, ∥µ∥π := ⟨µ, µ⟩1/2.

The Cauchy-Schwarz inequality implies ∥µ∥tv ≤ ∥µ∥π. Indeed,

∥µ∥2tv =

(∑
i∈I

|µ(i)|√
π(i)

·
√
π(i)

)2

≤ ∥µ∥2π.

The operator P naturally acts on ℓ2(π) via P · µ := µP .
The following spaces are more commonly used in the literature (see [10] for details). For 1 ≤ p ≤ ∞,

define

ℓpold(π) :=

{
f = (· · · , f(i), · · · )T ∈ CI

∣∣∣∣ ∥f∥ℓp < ∞
}
,

and

P · f := Pf, ∥P∥ℓp := sup
∥f∥ℓp=1

∥Pf∥ℓp .

Here, ∥f∥ℓp :=
(∑

i∈I |f(i)|pπ(i)
)1/p

for p ̸= ∞, and ∥f∥ℓ∞ := supi |f(i)|. Note that both ∥P∥ℓ1 and

∥P∥ℓ∞ are no greater than one. By Hölder’s inequality, we have ∥P∥ℓ2 ≤ 1. In particular, ℓ2old(π) is a
Hilbert space with the inner product

⟨f, g⟩ℓ2 :=
∑
i∈I

f(i)g(i)π(i).

Since P is reversible, there exists an isomorphism between the two Hilbert spaces that is compatible
with the action of P :

ϕ : ℓ2(π) → ℓ2old(π), µ 7→ (· · · , µ(i)/π(i), · · · )T.
Then

∥P∥π := sup
∥µ∥π=1

∥µP∥π = ∥P∥ℓ2 ≤ 1.

In other words, P is a linear contraction on ℓ2(π).
On the other hand, the adjoint operator P ∗ on ℓ2(π) is defined by

P ∗(i, j) :=
P (j, i)π(j)

π(i)
.
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Thus, P is self-adjoint as an operator. By fixing a one-to-one bijection between I and Z≥0, we obtain
an isomorphism between ℓ2(π) and

ℓ2 :=

ν = (ν(0), ν(1), · · · )T ∈ CZ≥0

∣∣∣∣ ∥ν∥ :=

( ∞∑
i=0

|ν(i)|2
)1/2

< ∞


by sending µ to µ/

√
π. Hence, ℓ2(π) is separable. In summary, P is a bounded, self-adjoint, linear

operator on the separable Hilbert space ℓ2(π).

2.2. Spectral theory.

Definition 9 (Spectrum of linear operators). Let T be a linear operator defined on a complex Hilbert
space X. The spectrum of T , denoted by σ(T ), is defined as follows:

σ(T ) := {λ ∈ C : (λI − T ) is not bijective}.
The spectrum of T is divided into three disjoint subsets:

(a) The point spectrum, or the set of all eigenvalues of T , is defined by

σp(T ) = {λ ∈ σ(T ) : Ker(λI − T ) ̸= 0}.
(b) The continuous spectrum of T is the set defined by

σc(T ) = {λ ∈ σ(T ) : Ker(λI − T ) = 0, and Im(λI − T ) = X}.
(c) The residual spectrum of T is the set defined by

σr(T ) = {λ ∈ σ(T ) : Ker(λI − T ) = 0 and Im(λI − T ) ⊊ X}.
Theorem 10 (Spectral theorem). Let T be a bounded self-adjoint linear operator on an infinite-
dimensional separable complex Hilbert space X. Then

(1) σ(T ) is a closed subset in B(0, ∥T∥);
(2) σr(T ) = ∅;
(3) all eigenvalues of T are real;
(4) eigenvectors associated with distinct eigenvalues are orthogonal.

If T is further assumed to be compact, then

(5) all eigenspaces of T are finite-dimensional;
(6) for any r > 0, there are only finitely many eigenvalues of T with absolute value greater than r;
(7) σ(T ) = {0} ∪ σp(T ), and at least one of −∥T∥ or ∥T∥ is an eigenvalue of T ;
(8) Arrange all eigenvalues by their absolute value: ∥T∥ = |λ0| ≥ |λ1| ≥ |λ2| ≥ · · · . Then

ℓ2(π) =
⊕
i≥0

Vλi
,

where Vλi are the eigenspaces associated with λi.

Theorem 11. Assume further that P is a compact operator on ℓ2(π). Let λ0, λ1, λ2, · · · be all eigen-
values of P with non-increasing absolute value. Then for any µ ∈ ℓ2(π),

∥µPn −
k∑

i=0

λn
i µi∥tv = O(|λk+1|n).
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Here, µi is the λi-component in the spectral decomposition of µ, and the implicit constant is less than
∥µ∥π. In particular,

∥µPn − µ0∥tv =

{
∥µ1∥tv · |λ1|n +O(|λ2|n), if |λ1| > |λ2|,
(∥µ1 + (−1)nµ2∥tv) · |λ1|n +O(|λ3|n), if |λ1| = |λ2|.

Here, µ0 = (µ·1)π, 1 = (1, 1, · · · , 1, · · · )T, and the implicit constant does not exceed
(
∥µ∥2π − (µ · 1)2

)1/2
.

This theorem generalizes fact 3 in [23].

Proof. Since P is irreducible, it has a unique stationary distribution π, which is an eigenvector corre-
sponding to the eigenvalue 1. For any µ ∈ Vλ with λ ̸= 1, we have µ·1 = 0, since µ·1 = µ·P1 = µP ·1 =
λ(µ · 1). We now prove that λ1 ̸= −1. If not, let µ be a nonzero eigenvector in V−1, and decompose µ
as µ = µ+ − µ−, where µ± ≥ 0. Without loss of generality, we assume

∑
i∈I µ+(i) = 1 =

∑
i∈I µ−(i),

since
∑

i∈I µ(i) = µ · 1 = 0. By the basic limit theorem, µ = (−1)2nµ = µP 2n = µ+P
2n − µ−P

2n

converges to π − π = 0 as n → ∞. By similar argument, we have V1 = ⟨π⟩.
By the spectral theorem, for any µ ∈ ℓ2(π), we can write µ =

∑
i≥0 µi, where µi ∈ Vλi

. Note that

µi are orthogonal and µ0 = (µ · 1)π. Then µPn =
∑

i≥0 λ
n
i µi, and

∥µPn −
k∑

i=0

λn
i µi∥2π =

∞∑
i=k+1

λ2n
i ∥µi∥2π

=

( ∞∑
i=k+1

∥µi∥2π ·
(

λi

λk+1

)2n
)

· λ2n
k+1

≤
( ∞∑

i=k+1

∥µi∥2π

)
· λ2n

k+1 = (∥µ∥2π −
k∑

i=0

∥µi∥2π) · λ2n
k+1.

Thus,

∥µPn −
k∑

i=0

λn
i µi∥tv = O(|λk+1|n).

In particular, if |λ1| > |λ2|, we have

∥µPn − µ0 − λn
1µ1∥tv = O(|λ2|n),

and hence
∥µPn − µ0∥tv = ∥µ1∥tv · |λ1|n +O(|λ2|n).

If |λ1| = |λ2|, we have

∥µPn − µ0∥tv = (∥µ1 + (−1)nµ2∥tv) · |λ1|n +O(|λ3|n), as n → ∞.

All implicit constants are bounded above by (∥µ∥2π − ∥µ0∥2π)1/2 = (∥µ∥2π − (µ · 1)2)1/2. □

3. Hilbert-Schmidt Markov chains

Recall that a bounded linear operator T on a separable Hilbert space X is called Hilbert-Schmidt
if there exists an orthonormal basis {en : n ≥ 0} such that

∥T∥HS :=

( ∞∑
i=0

∥Ten∥2
) 1

2

< ∞.
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A Hilbert-Schmidt operator is always compact. To see this, let PN be the projection onto the finite-
dimensional space spanned by {e1, · · · , eN}. Then PNT , being a finite-rank operator, is compact and
converges to T uniformly.

Note that the Hilbert-Schmidt norm is independent of the choice of orthonormal basis. In our
situation, the main idea to prove that an operator is Hilbert-Schmidt is to find an orthonormal basis
consisting of eigenvectors and then show that

∥T∥2HS =

∞∑
i=0

diλ
2
i < ∞,

where di is the dimension of Vλi .

Definition 12. Let P be an irreducible, aperiodic, and reversible transition matrix with respect to π.
Then P is said to be Hilbert-Schmidt if it is Hilbert-Schmidt as an operator on ℓ2(π).

For any two real numbers q > 1 and m > −1, consider the transition matrix Pm on Z≥0 defined by

Pm(i, j) =


q−1−2i−m, if j = i+ 1,

1− (1− q−i)(1− q−m−i)− q−1−2i−m, if j = i,

(1− q−i)(1− q−m−i), if j = i− 1,

0, otherwise.

This matrix is irreducible and aperiodic because Pm(i, i) > 0 for all i ≥ 0.
Define the distribution πm by

πm(i) =
θm(q)

qi(i+m)ηi(q)
∏i

j=1(1− q−m−j)
,

where

ηk(q) =

k∏
i=1

(1− q−i),

and

θm(q)−1 :=

∞∑
i=0

1

qi(i+m)ηi(q)
∏i

j=1(1− q−m−j)
< ∞.

Then Pm is reversible with respect to πm.

We now prove that Pm is Hilbert-Schmidt.

Proof of Theorem 6. First, we prove that for any k ≥ 1, the real number q−k is an eigenvalue. Define
πm ◦ qi ∈ CZ≥0 by

(πm ◦ qi)(k) := πm(k) · qik.
We can check that πm ◦ qi ∈ ℓ2(πm). We claim that there exist coefficients a0, . . . , ak (depend on k)

such that
∑k

i=0 ai · (πm ◦ qi) is an eigenvector associated with q−k.

If
∑k

i=0 ai · (πm ◦ qi) is an eigenvector associated with q−k, that means for each l,(
k∑

i=0

ai · (πm ◦ qi)Pm

)
(l) = q−k

(
k∑

i=0

ai · πm(l) · qil
)
.
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By reversibility and πm(l) ̸= 0, this is equivalent to

l+1∑
j=l−1

(
k∑

i=0

aiq
ij

)
Pm(l, j) = q−k

(
k∑

i=0

aiq
il

)
.

Since
∑l+1

j=l−1 Pm(l, j) = 1, we have

Pm(l, l − 1)

k∑
i=0

ai(q
−i − 1)qil + Pm(l, l + 1)

k∑
i=0

ai(q
i − 1)qil = (q−k − 1)

(
k∑

i=0

aiq
il

)
.

Substituting the values of Pm(l, l − 1) and Pm(l, l + 1), we obtain

(
1− (1 + q−m)q−l + q−m−2l

) k∑
i=0

ai(q
−i − 1)qil + q−1−m−2l

k∑
i=0

ai(q
i − 1)qil = (q−k − 1)

(
k∑

i=0

aiq
il

)
.

Comparing the coefficients of qil on both sides and formally setting ak+1 = ak+2 = 0, we obtain the
recurrence relation

(q−i − q−k)ai − (1+ q−m)(q−1−i − 1)ai+1 +(q−2−i−m − q−m + qi+1−m − q−1−m)ai+2 = 0, 0 ≤ i ≤ k.

This recurrence has a unique solution {a0, . . . , ak} up to a scalar factor.

Next, we show that these eigenvectors generate the entire space ℓ2(πm).

One can verify that the equation vPm = λv has only one solution (up to scale) for each eigenvalue
λ, meaning all eigenspaces Vλ are one-dimensional. We claim that the Pm-invariant subspace V :=
⟨π ◦ qi, i ≥ 0⟩ is dense in ℓ2(πm), and thus

ℓ2(πm) = V =
⊕
i≥0

Vq−i .

To prove this, it suffices to show that δ0 ∈ V , where δi ∈ ℓ2(πm) is defined by δi(k) = 1 if k = i and 0
otherwise. Indeed, if δ0 ∈ V , then δ1 also lies in V because it is a linear combination of δ0 and δ0Pm.
By induction, all δi (which generate ℓ2(πm)) belong to V .

From the q-series identity (due to Euler [11, eq(19)]), we have

∞∏
i=1

(
1− q−it

)
=

∞∑
k=0

(−1)k∏k
j=1(q

j − 1)
tk.

Let bk = (−1)k∏k
j=1(q

j−1)
and ck = bk

η∞(q)πm(0) . We claim that

lim
N→∞

N∑
k=0

ck(π0 ◦ qk) = δ0 ∈ ℓ2(πm),

which is equivalent to

lim
N→∞

πm(0) ·
∣∣∣∣∣

N∑
k=0

ck − πm(0)−1

∣∣∣∣∣
2

+
1

η∞(q)2πm(0)2
·

∞∑
i=1

πm(i) ·
∣∣∣∣∣

N∑
k=0

bkq
ki

∣∣∣∣∣
2

= 0.
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By the definition of ck, the first term converges to 0. Since πm(i) ≪ q−i2−mi uniformly for all i, it
remains to show

lim
N→∞

∞∑
i=1

1

qi2+mi
·
∣∣∣∣∣

N∑
k=0

bkq
ki

∣∣∣∣∣
2

= 0.

Since
∑∞

k=0 bkq
ki = 0, we have ∣∣∣∣∣

N∑
k=0

bkq
ki

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=N+1

bkq
ki

∣∣∣∣∣ .
Note that ∣∣∣∣ bkq

ki

bk−1q(k−1)i

∣∣∣∣ = qi

qk − 1
.

To use the property of alternating series, we divide the estimation into two parts:

N∑
i=1

1

qi2+mi
·
∣∣∣∣∣

N∑
k=0

bkq
ki

∣∣∣∣∣
2

and

∞∑
i=N+1

1

qi2+mi
·
∣∣∣∣∣

N∑
k=0

bkq
ki

∣∣∣∣∣
2

.

On the one hand, we have

N∑
i=1

1

qi2+mi
·
∣∣∣∣∣

∞∑
k=N+1

bkq
ki

∣∣∣∣∣
2

≤
N∑
i=1

1

qi2+mi
b2N+1q

2(N+1)i

≤ 1

η∞(q)2
1

q(N+1)(N+2)

N∑
i=1

1

qi2+mi
q2(N+1)i

≪ 1

q(N+1)(N+2)

N+1∑
i=1

q2(N+1)i−mi−i2 .

Define F (N) :=
∑∞

i=0 q
2Ni−mi−i2 and f(N) = F (N)

qN(N+1) . Then

F (N + 1) = 1 + q2N+1−m
∞∑
i=1

q2N(i−1)−m(i−1)−(i−1)2 = 1 + q2N+1−mF (N).

Hence,

f(N + 1) =
1

q(N+1)(N+2)
+

f(N)

qm+1
,

and f(N) → 0 as N → ∞.
On the other hand,

∞∑
i=N+1

1

qi2+mi
·
∣∣∣∣∣

N∑
k=0

bkq
ki

∣∣∣∣∣
2

≤
∞∑

i=N+1

1

qi2+mi
b2Nq2Ni

≪
∞∑

i=N+1

q−i2−mi+2Ni−N(N+1)

≪ 1

q(m+1)N

∞∑
i=1

q−(i+m/2)2 → 0 as N → ∞.
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Hence, all normalized eigenvectors form an orthogonal basis of ℓ2(πm), and

∥Pm∥2HS =

∞∑
i=0

q−2i = (1− q−2)−1.

Therefore, Pm is Hilbert-Schmidt. □

Remark 13. The eigenvalues of all transition matrices (both in the theorem above and in the next
section) can be estimated numerically using matrix truncation methods (see [19]).

From the above proof, we can deduce the following lemma, which is crucial when dealing with
different types of matrices in next section.

Lemma 14. Let m > −1 be a real number. If f(z) =
∑∞

i=0 µiz
i ∈ C[[z]] satisfies

∑∞
i=0 |µi|2qi

2+mi <
∞ and f(qk) = 0 for all k ≥ 0, then f = 0.

Proof. Let µ = (· · · , µi, · · · ). Note that

πm(k) ≍ 1

qk(k+m)
.

Thus,
∑∞

i=0 |µi|2qi
2+mi < ∞ if and only if µ ∈ ℓ2(πm). On the other hand, f(qk) = 0 for all k ≥ 0 is

equivalent to
⟨µ, πm ◦ qi⟩πm

= 0 for all i ≥ 0.

Hence,
µ ∈ ⟨πm ◦ qi | i ≥ 0⟩⊥ = ℓ2(πm)⊥ = {0}.

□

Remark 15. (1) Unlike the conclusion of Carlson’s theorem [8] in complex analysis, the main
differences are that we cannot control the growth of f(z), and the points qk are too sparse.

(2) If m < −1, the lemma does not hold. Take µi = biq
i, where bi is defined in the proof of

Theorem 6. Then f(z) =
∏∞

k=0

(
1− q−kz

)
̸= 0, but we always have

∞∑
i=0

|µi|2qi
2+mi < ∞ for any m < −1.

4. Corank distribution of random matrices

In this section, we investigate specific Markov chains arising from the corank distributions of different
types of matrices over finite fields. These problems have been extensively studied in the literature
(see [9, 13]). After proving that these Markov chains are Hilbert-Schmidt, we deduce asymptotic
expressions for the corank distributions using the results from earlier sections.

4.1. Uniform case. Let q be a prime power and m a non-negative integer. The first example we
consider is the uniform distribution on the set of all n × (n + m) matrices over the finite field Fq.
Define the corank of a matrix M as corank M = n− rank M . From [13, Section 1], we know that

Prob
(
corank M = k | M ∈ Matn×(n+m)(Fq)

)
= (δ0P

n
m)(k),

and the stationary distribution πm is given by

πm(i) =
η∞(q)

qi(i+m)ηi(q)ηi+m(q)
.

Note that this πm is the same as the one defined in Section 3.
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By Theorems 6 and 11, we obtain Corollary 7.

Proof of Corollary 7. By Theorem 6, the maximal non-one eigenvalue of Pm is q−1, and

ν := πm − πm ◦ q
1 + q−m

is an associated eigenvector (unique up to a scalar since Vq−1 is one-dimensional). The q−1-component
of δ0 is given by

(δ0)q−1 =
⟨δ0, ν⟩πm

⟨ν, ν⟩πm

ν =
(qm + 1)−1

⟨ν, ν⟩πm

ν.

By direct calculation, we have

⟨ν, ν⟩πm
=

∞∑
i=0

πm(i)− 2

1 + q−m

∞∑
i=0

πm(i)qi +
1

(1 + q−m)2

∞∑
i=0

πm(i)q2i

= M(πm, 0)− 2

1 + q−m
M(πm, 1) +

1

(1 + q−m)2
M(πm, 2),

where M(πm, k) is the k-th moment of πm, defined by

M(πm, k) =

∞∑
i=0

πm(i)qki.

From [3, Example 6.6], it is known that

M(πm, 0) = 1, M(πm, 1) = 1 + q−m, M(πm, 2) = 1 + (q + 1)q−m + q−2m.

Substituting these values, we obtain

⟨ν, ν⟩πm
=

(q − 1)qm

(qm + 1)2
.

In general, note that M(πm, k) = (πm ◦ qk) · 1 and
∑k

i=0 ai(πm ◦ qi) ∈ Vq−k for some coefficients
ai ∈ R. Since Vλ ⊥ 1 for λ ̸= 1, we can compute M(πm, k) by induction.

Now, we have

(δ0)q−1 =
qm + 1

(q − 1)qm
ν.

Note that ν(0) > 0 and ν(i) ≤ 0 for all i > 0. Since ν · 1 =
∑∞

i=0 ν(i) = 0, the total variation norm of
ν is

∥ν∥tv = 2ν(0) =
2πm(0)

qm + 1
.

Therefore, the total variation norm of (δ0)q−1 is

∥(δ0)q−1∥tv =
2πm(0)

(q − 1)qm
.

By Theorem 11, we have

∥δ0Pn
m − πm∥tv =

2η∞(q)/ηm(q)

(q − 1)qm
q−n +O(q−2n),

where the implicit constant is bounded above by(
∥δ0∥2π − (δ0 · 1)2

)1/2
=
(
πm(0)−2 − 1

)1/2
.

□
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Remark 16. In [9], Fulman and Goldstein proved that (note that ∥ · ∥tv = 2∥ · ∥TV )

1

4qm+1
q−n ≤ ∥δ0Pn

m − πm∥tv ≤ 6

qm+1
q−n.

Our estimate improves upon their result, as can be seen from the comparison:

2η∞(q)/ηm(q)

(q − 1)qm
<

2

(q − 1)qm
<

6

qm+1
,

and
2η∞(q)/ηm(q)

(q − 1)qm
≥ 2η∞(q)

(q − 1)qm
≥ 2η∞(2)

(q − 1)qm
>

1

4qm+1
.

Here, η∞(2) ≈ 0.29.

Now, we transition from the corank distribution to the cokernel distribution.

Proof of Theorem 4. For a matrix M ∈ Matn×(n+m)(Zp), recall that the cokernel of M is defined as

the quotient Zn
p/col(M), where col(M) := MZn+m

p denotes the submodule of Zn
p generated by the

columns of M . For any finite abelian p-group G, the probability measure can be expressed as

µ
({

M ∈ Matn×(n+m)(Zp) : coker M ≃ G
})

=
∑

L≤Zn
p ,

Zn
p/L≃G

µ(col−1(L)),

where L runs over submodules of Zn
p .

Fix an M0 ∈ col−1(L) ⊂ Matn×(n+m)(Zp). Then the preimage of L can be expressed as

col−1(L) = {M0Q : Q ∈ GLn+m(Zp)} .
Consider the decompositionM0 = P0diag(a1, a2, . . . , an)Q0, where P0 ∈ GLn(Zp), Q0 ∈ GLm+n(Zp),

and diag(a1, a2, . . . , an) ∈ Matn×(n+m)(Zp) is the diagonal matrix with diagonal elements a1, a2, . . . , an.

Since col(M0) has finite index in Zn
p , all ai are nonzero and satisfy |a1 · · · an|p = |G|−1.

Note that µ(P0 · ) also defines a Haar measure on Matn×(n+m)(Zp) with µ(P0Matn×(n+m)(Zp)) = 1.
The uniqueness of the Haar measure implies µ(P0 · ) = µ. Thus, we obtain

µ(col−1(L)) = µ ({diag(a1, . . . , an)Q : Q ∈ GLn+m(Zp)}) .
Hence,

µ(col−1(L)) = µ
({

(a1α1, . . . , anαn)
⊤ : (α1, . . . , αn+m)⊤ ∈ GLn+m(Zp)

})
= |a1|n+m

p · · · |an|n+m
p µ

({
(α1, . . . , αn)

⊤ : αi ∈ Zn+m
p \ ⟨pZn+m

p , α1, . . . , αi−1⟩
})

= |G|−(n+m)
n+m∏

i=m+1

(1− p−i).

Combining this with the submodule counting formula from [3, Proposition 3.1]:∑
L≤Zn

p ,

Zn
p/L≃G

1 = |G|n|Aut(G)|−1 ηn(p)

ηn−r(p)
,
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where r = rkp(G) := dimFp G/pG denotes the p-rank of G. We conclude that

µ ({M : coker M ≃ G}) = |G|−m|Aut(G)|−1 ηn+m(p)ηn(p)

ηm(p)ηn−r(p)
.

Recalling the classical results (for example, see [9]),

Prob(corank M = r | M ∈ Matn×(n+m)(Fp)) = p−r(r+m) ηn+m(p)ηn(p)

ηn−r(p)ηr(p)ηr+m(p)
,

we establish the following relation:

µ ({M : coker M ≃ G}) = pr(r+m)ηr(p)ηr+m(p)

|G|m|Aut(G)|ηm(p)
Prob

(
corank M = r | M ∈ Matn×(n+m)(Fp)

)
.

The above process originates from [7, Proposition 1] (for m = 0) or [16, Proposition 14.1] (for m = 1).
Finally, reformulate the cokernel distribution using the Markov chain:

µ ({M : coker M ≃ G}) = wm(G)

πm(r)
(δ0P

n
m)(r).

Thus, to study the asymptotic behavior of the cokernel distribution as n → ∞, we only need to
calculate (δ0P

n
m)(r).

In the proof of Corollary 7, we have the decomposition:

δ0 = πm +
pm + 1

(p− 1)pm
ν + δ′,

where

ν = πm − πm ◦ p
1 + p−m

∈ Vp−1 and δ′ ∈
⊕
i≥2

Vp−i .

Hence,

∥δ′Pn
m∥tv ≤ ∥δ′Pn

m∥πm
≤ ∥δ′∥πm

p−2n ≤
(
πm(0)−2 − 1

)1/2
p−2n,

and so (δ′Pn
m)(r) = O(p−2n).

From this,

µ ({M : coker M ≃ G}) = wm(G)

πm(r)

(
πm(r) +

pm + 1

(p− 1)pm
ν(r)p−n +O(p−2n)

)
= wm(G) +

wm(G)(1 + p−m − pr)

p− 1
p−n +O(p−2n).

Here, since wm(G) ≤ πm(r), the implicit constant is bounded above by(
πm(0)−2 − 1

)1/2
=
(
ηm(p)2/η∞(p)2 − 1

)1/2
.

□
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4.2. Skew centrosymmetric case. Assume q is odd. Consider the space of skew centrosymmetric
matrices:

Matscsn (Fq) := {M ∈ Matn(Fq) : Mij = −Mji = Mn+1−j,n+1−i} .
Note that the rank of such matrices is always even (see [9]).

More precisely, we have the following corank distributions:

Prob(corank M = 2k | M ∈ Matscs2n (Fq)) = Prob(corank M = k | M ∈ Matn(Fq))

and

Prob(corank M = 2k + 1 | M ∈ Matscs2n+1(Fq)) = Prob(corank M = k | M ∈ Matn×(n+1)(Fq)).

Thus, these corank distributions can be directly derived from the uniform case results.

4.3. Symmetric case. Let q be a prime power. Consider the space of symmetric matrices:

Matsymn (Fq) := {M ∈ Matn(Fq) : M
T = M}.

From [13], we have the corank distribution:

Prob(corank M = k | M ∈ Matsymn (Fq)) = (δ0P
n
sym)(k),

where the transition matrix Psym is defined by:

Psym(i, j) =


q−i−1, if j = i+ 1,

q−i − q−i−1, if j = i,

1− q−i, if j = i− 1,

0, otherwise.

The Markov chain Psym is irreducible, aperiodic, and reversible with stationary distribution:

πsym(k) =
α(q)∏k

i=1(q
i − 1)

, α(q) =

∞∏
i=1
i odd

(1− q−i).

Theorem 17. Psym is Hilbert-Schmidt on ℓ2(πsym) with point spectrum:

σp(Psym) = {±q−k : k ≥ 0} \ {−1}.
Proof. Similar to the approach in Theorem 6, the eigenvectors associated with eigenvalues ±q−k can
be expressed as linear combinations of πm and {πm ◦ (±qi) : i = 1, . . . , k}, with each eigenspace V±q−k

being 1-dimensional.
The key step is to prove the spectral decomposition:

ℓ2(πsym) = ⟨πsym⟩ ⊕
⊕
k≥1

V±q−k .

This reduces to showing that if µ ∈ ℓ2(πsym) satisfies both µ ⊥ πsym and µ ⊥ (πsym ◦ (±qk)) for all
k ≥ 1, then µ = 0.

The orthogonality condition µ ⊥ (πsym ◦ (±qk)) implies:

∞∑
i=0

µ(i)(±1)iqki = 0 for all k ≥ 1.
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This decouples into two independent conditions:

∞∑
i=0

µ(2i)(q2)ki = 0 and

∞∑
i=0

µ(2i+ 1)(q2)ki = 0.

Since µ ∈ ℓ2(πsym) is equivalent to
∑∞

i=0 |µ(i)|2qi(i+1)/2 < ∞, we have:

∞∑
i=0

|µ(2i)|2(q2)i2 < ∞ and

∞∑
i=0

|µ(2i+ 1)|2(q2)i2 < ∞.

Define the even and odd parts:

µeven = (µ(0), µ(2), . . . ), µodd = (µ(1), µ(3), . . . ).

These satisfy µeven, µodd ∈ ℓ2(π) and are orthogonal to ⊕k≥1V(q2)−k in ℓ2(π), where π is the stationary
distribution for the uniform case over Fq2 with m = 0.

Similar to the proof of the Lemma 14, we conclude µeven, µodd ∈ ⟨π⟩. The condition µ ⊥ πsym

implies:
∞∑
i=0

µ(i) = 0,

which forces µeven = aπ = −µodd for some a ∈ C. Thus µ ∈ ⟨π̂⟩, where
π̂ = (π(0),−π(0), π(1),−π(1), . . . ).

By self-duality of Psym, the orthogonality µ ⊥ ⟨πsym, πsym ◦ (±qk) : k ≥ 1⟩ implies Psym · µ = µPsym

maintains the same orthogonality. Thus µPsym ∈ ⟨π̂⟩. Since ⟨π̂⟩ is not Psym-invariant, we must have
µ = 0. □

Corollary 18. The convergence rate is given by:

∥δ0Pn
sym − πsym∥tv =

{
2qα(q)
q2−1 q−n +O(q−2n), n even,

2qα(q)
(q2−1)(q−1)q

−n +O(q−2n), n odd,

with implicit constants are less than (α(q)−2 − 1)1/2.

Proof. The two dominant eigenvalues (excluding 1) are λ+ = q−1 and λ− = −q−1. Following the
approach in Corollary 7, we construct the corresponding eigenvectors:

ν+ := πsym − 1

2
(πsym ◦ q) ∈ Vq−1 , ν− := πsym ◦ (−q) ∈ V−q−1 .

Define the k-th moment of πsym as M(πsym, k) :=
∑∞

i=0 πsym(i)q
ki. By induction, we obtain:

M(πsym, 0) = 1, M(πsym, 1) = 2, M(πsym, 2) = 2 + 2q.

These yield the following inner products:

⟨ν+, ν+⟩πsym
=

q − 1

2
, ⟨ν−, ν−⟩πsym

= 2 + 2q,

Then the spectral projections of δ0 are:

(δ0)+ =
1

q − 1
ν+, (δ0)− =

1

2(q + 1)
ν−.
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Observe that in (δ0)++(δ0)−, only the first coordinates is positive, while in (δ0)+− (δ0)−, only the
first two coordinates are positive. Hence, the total variation norm of (δ0)+ + (−1)n(δ0)− is:

∥(δ0)+ + (−1)n(δ0)−∥tv =

{
2qα(q)
q2−1 , n even,

2qα(q)
(q2−1)(q−1) , n odd.

Applying Theorem 11, we obtain the final convergence rate:

∥δ0Pn
sym − πsym∥tv =

{
2qα(q)
q2−1 q−n +O(q−2n), n even,

2qα(q)
(q2−1)(q−1)q

−n +O(q−2n), n odd,

where the implicit constants are less than (α(q)−2 − 1)1/2. □

Remark 19. This improves Theorem 4.1 in [9], clarifying that the parity distinction arises from Psym

having eigenvalue pairs ±q−1.

4.4. Alternating case. Consider alternating (skew-symmetric) matrices:

Mataltn (Fq) :=
{
M ∈ Matn(Fq) : M

T = −M and Mii = 0 for all i
}
.

As established in [9, 13], such matrices always have even rank. The corank distributions are given by:

Prob(corank M = 2j + 1 | M ∈ Matalt2n+1) = (δ0P
n
alt)(j),

Prob(corank M = 2j | M ∈ Matalt2n) = (δ0Q
n
alt)(j),

with transition matrices:

Palt(i, j) =


q−4i−3, j = i+ 1,

1− q−4i−3 − (1− q−2i)(1− q−2i−1), j = i,

(1− q−2i)(1− q−2i−1), j = i− 1,

0, otherwise,

and

Qalt(i, j) =


q−4i−1, j = i+ 1,

1− q−4i−1 − (1− q−2i)(1− q−2i+1), j = i,

(1− q−2i)(1− q−2i+1), j = i− 1,

0, otherwise.

The stationary distributions of Palt (resp. Qalt) is:

πalt(j) =
α(q)

q2j2+jη2j+1(q)

(
resp. π′

alt(j) =
α(q)

q2j2−jη2j(q)

)
.

Theorem 20. Palt (resp. Qalt) is Hilbert-Schmidt on ℓ2(πalt) (resp. ℓ2(π′
alt)) with point spectrum:

σp(Palt) = σp(Qalt) = {q−2k : k ≥ 0}.
Proof. Similar to the approach in Theorem 6, for Palt, the eigenvectors corresponding to q−2k are
linear combinations of {πalt ◦ (q2i) : 0 ≤ i ≤ k}. To complete the proof, it suffices to show that if
µ ∈ ℓ2(πalt) satisfies:

∞∑
i=0

|µ(i)|2(q2)i2+i/2 < ∞ and

∞∑
i=0

µ(i)(q2)ki = 0 for all k ≥ 1,
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then µ = 0. This follows directly from Lemma 14. The proof for Qalt is analogous. □

Corollary 21. The convergence rates are:

∥δ0Pn
alt − πalt∥tv =

2α(q)

(q − 1)2(q + 1)
q−2n +O(q−4n),

∥δ0Qn
alt − π′

alt∥tv =
α(q)q

(q − 1)(q + 1)
q−2n +O(q−4n),

with implicit constants less than (η1(q)
2α(q)−2 − 1)1/2 and (α(q)−2 − 1)1/2 respectively.

Proof. Let us first analyze the case for Palt. We begin by constructing the eigenvector associated with
the eigenvalue q−2:

ν := πalt − q
q+1 (πalt ◦ q2) ∈ Vq−2 .

Furthermore, we observe that the following combination belongs to the eigenspace Vq−4 :

(1 + q2)(1 + q−1)(πalt − πalt ◦ q2) + πalt ◦ q4 ∈ Vq−4 .

Proceeding by induction, we establish the moments of the stationary distribution:

M(πalt, 0) = 1, M(πalt, 2) = 1 + q−1, M(πalt, 4) = (1 + q2)(1 + q−1)q−1.

These moment calculations lead to two important results. First, the inner product of ν with itself:

⟨ν, ν⟩πalt
= q(q−1)

q+1 .

Second, the total variation norm of ν:

∥ν∥tv = 2α(q)
(q+1)η1(q)

.

With these preparations, we can now determine the spectral projection of δ0 onto Vq−2 :

(δ0)q−2 = q−1(q − 1)−1ν,

which consequently gives:

∥(δ0)q−2∥tv = 2α(q)
(q−1)2(q+1) .

Turning now to Qalt, we follow a parallel approach. The corresponding eigenvector is:

ν′ := π′
alt − 1

q+1 (π
′
alt ◦ q2) ∈ Vq−2 .

Similarly, we identify an element in Vq−4 :

π′
alt − 1

q (π
′
alt ◦ q2) + 1

q(q+1)(q2+1) (π
′
alt ◦ q4) ∈ Vq−4 .

The moment calculations for Qalt yield:

M(π′
alt, 0) = 1, M(π′

alt, 2) = q + 1, M(π′
alt, 4) = (q + 1)(q2 + 1).

From these, we derive the key quantities:

⟨ν′, ν′⟩π′
alt

= q(q−1)
q+1 , ∥ν′∥tv = α(q)q

q+1 .

Finally, the spectral projection for Qalt satisfies:

(δ0)q−2 = (q − 1)−1ν′, ∥(δ0)q−2∥tv = α(q)q
(q−1)(q+1) .

Then the desired results follows from Theorem 11. □
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4.5. Hermitian case. Let q be a power of an odd prime, and fix θ ∈ Fq2 such that θ2 ∈ Fq but θ /∈ Fq

(see [9]). Every element α ∈ Fq2 can be expressed as α = a + bθ with a, b ∈ Fq, and we define its
conjugate as α = a− bθ.

For a matrix M = (αij) ∈ Matn(Fq2), let M
∗ = (αji) denote its conjugate transpose. The space of

Hermitian matrices is:

MatHer
n (Fq2) := {M ∈ Matn(Fq2) : M

∗ = M}.
The corank distribution is given by:

Prob(corank M = k | M ∈ MatHer
n (Fq2)) = (δ0P

n
Her)(k),

where the transition matrix PHer has entries:

PHer(i, j) =


q−2i−1, j = i+ 1,

q−2i(1− q−1), j = i,

1− q−2i, j = i− 1,

0, otherwise,

with stationary distribution:

πHer(j) =
β(q)

qj2ηj(q2)
, β(q) =

∞∏
i=1, odd

(1 + q−i)−1.

Theorem 22. The operator PHer is Hilbert-Schmidt on ℓ2(πHer) with point spectrum:

σp(PHer) = {(−q)−k : k ≥ 0}.
Proof. Following the approach in Theorem 6, we need to verify:

lim
N→∞

∞∑
i=1

1

qi2

∣∣∣∣∣
N∑

k=0

b′k(−q)ki

∣∣∣∣∣
2

= 0,

where b′k = (−1)k∏k
j=1((−q)j−1)

. The proof decomposes into two cases:

lim
N→∞

∞∑
i=1,odd

1

qi2
·
∣∣∣∣∣

N∑
k=0

b′k(−q)ki

∣∣∣∣∣
2

= 0 = lim
N→∞

∞∑
i=1,even

1

qi2
·
∣∣∣∣∣

N∑
k=0

b′k(−q)ki

∣∣∣∣∣
2

.

For odd i,

sign(b′k(−q)ki) is

{
> 0, if k ≡ 0, 3 mod 4

< 0, if k ≡ 1, 2 mod 4.

Using the ratio test: ∣∣∣∣∣ b′k(−q)ki

b′k−1(−q)(k−1)i

∣∣∣∣∣ = qi

qk − (−1)k
,

we establish convergence via alternating series estimates. Indeed, we have

N∑
i=1,odd

1

qi2
·
∣∣∣∣∣

∞∑
k=N+1

b′k(−q)ki

∣∣∣∣∣
2

≪ 1

q(N+1)(N+2)

N∑
i=1,odd

1

qi2
q2(N+1)i → 0 as N → ∞,
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and
∞∑

i=N+1,odd

1

qi2
·
∣∣∣∣∣

N∑
k=0

b′k(−q)ki

∣∣∣∣∣
2

≪ 1

qN
→ 0 as N → ∞.

The even i case follows similarly.
□

Corollary 23. The convergence rate is:

∥δ0Pn
Her − πHer∥tv =

2β(q)

(q + 1)α(q2)
q−n +O(q−2n),

with implicit constant less than (β(q)−2 − 1)1/2.

Proof. The dominant eigenvector is:

ν := πHer ◦ (−q) ∈ V−q−1 .

Combing with πHer− 1
q+1 (πHer ◦q2) ∈ Vq−2 , we get the inner product ⟨ν, ν⟩πHer = q+1. Since ν ⊥ πHer,

the total variation norm is:

∥ν∥tv = 2

∞∑
j=0

|ν(2j + 1)| = 2

∞∑
j=0

β(q)

q(2j+1)2η2j+1(q2)
q2j+1 =

2β(q)

α(q2)

∞∑
j=0

α(q2)

(q2)2j2+jη2j+1(q2)

Observe that
(
· · · , α(q2)

(q2)2j2+jη2j+1(q2)
, · · ·

)
is the stationary distribution of Palt over Fq2 . Hence,

∥ν∥tv =
2β(q)

α(q2)
.

The spectral projection yields:

(δ0)−q−1 =
1

q + 1
ν, ∥(δ0)−q−1∥tv =

2β(q)

(q + 1)α(q2)
.

Then the desired results follows from Theorem 11. □
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