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Abstract. Let E be an elliptic curve defined over Q with complex multiplication by an imaginary
quadratic field K, and let p be a prime that splits in K. Let L(E, s) denote the complex L-series of E
over Q, which is a holomorphic function of s on the whole complex plane, according to a theorem of
Deuring. In this paper, we assume that L(E, s) has a simple zero at s = 1, and that E has good ordinary
reduction at p when p = 2. We show that the p-part of the refined Birch-Swinnerton-Dyer formula for E
holds. We present two applications of this result: (1) Based on recent progress on the 2-converse theorem
for rational elliptic curves, we show that if the Z2-corank of the 2-power Selmer group of E is one, and
E has good ordinary reduction at 2, then the 2-part of the refined Birch-Swinnerton-Dyer formula for
E holds; (2) By combining earlier works of one of us on the congruent number problem, we prove that
there are infinitely many rational elliptic curves with both algebraic and analytic ranks one, whose
conductors can have any prescribed number of prime factors, for which the full Birch-Swinnerton-Dyer
conjecture holds.

1. Introduction

1.1. The main result. Let E be an elliptic curve defined over Q. We assume that E has complex
multiplication, i.e., EndQ(E) ⊗Z Q is an imaginary quadratic number field. Denote by E(Q) (resp.
X(E/Q)) the Mordell–Weil (resp. the Shafarevich-Tate group) of E. Let L(E, s) be the complex L-
series of E, which, by a theorem of Deuring, is a holomorphic function on the entire complex s-plane.
Let p be a prime at which E has potentially good ordinary reduction, i.e., E has good ordinary reduction
at all primes above p in some finite extension of Q.

The primary goal of this paper is to prove the following result:

Theorem 1.1. Assume that L(E, s) has a simple zero at s = 1.
(i) The Mordell-Weil group E(Q) has rank one and the Shafarevich-Tate group X(E/Q) is finite;
(ii) Assume further that E has good ordinary reduction at p if p = 2. Then the p-part of the refined

Birch-Swinnerton-Dyer formula for E holds.

1.2. Historical Background and Our Approach. We now provide some historical background for
Theorem 1.1. Part (i) follows from the theorems of Gross-Zagier and Kolyvagin. For part (ii), when p
is an odd good ordinary prime, the p-part of the refined Birch-Swinnerton-Dyer formula was established
by Perrin-Riou [40], using the following three ingredients:

• The complex and p-adic Gross-Zagier formulae [31], [40];
• Schneider’s algebraic descent methods [47];
• The Iwasawa main conjecture over imaginary quadratic fields [45].

Therefore, Theorem 1.1 essentially covers two distinct cases:
• Odd bad case: p is an odd potentially good ordinary prime;
• Even case: p = 2.

Our approach generalizes Perrin-Riou’s proof, leveraging recent advances on the complex and p-adic
Gross-Zagier formulae ([53], [18], [19]), the Iwasawa main conjecture over imaginary quadratic fields
([32]), and an extension of Yager’s theorem to p = 2 ([35]). The main challenge arises in the even case.
Schneider’s algebraic descent methods fail in this case for two reasons:
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• Since the Tamagawa numbers are even, the Mazur module defined via global flat cohomology
cannot coincide with the classical Selmer group when E has a bad prime (see [36, Appendix] and
[46, Lemma 6.6]).

• Schneider’s proof depends on Mazur’s theorem, which asserts the non-existence of certain non-
zero finite submodules. However, this result holds only for p 6= 2 (see [47, Pages 338 and 340]
and [36, Corollary 5.12]).

We assume that the elliptic curve E has complex multiplication (CM) by an imaginary quadratic
field K. To address the aforementioned obstacles, we consider a base change of E to certain quadratic
extension F over K, such that E has good reduction everywhere over F , and the analytic rank of E/F is
equal to that of E/K. The first assumption allows us to reduce the study of Mazur modules to the study
of Selmer groups. Based on the recent development of the rank zero Birch-Swinnerton-Dyer formula for
CM elliptic curves [4], the second assumption ensures that once we can prove the algebraic analogue of
the Birch-Swinnerton-Dyer formula for E/F we get the formula for E/K.

We apply the following two approaches:
(1) We generalize the work of Perrin-Riou and Schneider (see [41], [48]) on the isogeny invariance of

the product of algebraic p-adic L-function and complex period of an abelian variety to the case
where p = 2. Using the isogeny invariance theorem for the Birch-Swinnerton-Dyer conjecture
([37]), we can prove the even case, provided that F/K is unramified at 2.

(2) We draw upon recent works by Coates (see [9], [13]) regarding Iwasawa theory for elliptic curves
with complex multiplication at p = 2. These works involve both finite-level descent and infinite
descent along the Coates-Wiles Z2-extension. We can then identify a field F that satisfies the
conditions mentioned above and link the descent of E/F to E/K using Coates’s method.

To handle the descent for E/F , we employ methods from Greenberg (see [27], [29] and [28]), and from
this, we establish the non-existence of non-zero finite submodules.

1.3. Outline of the Proof of the Main Theorem. We now give a brief overview of the proof of
Theorem 1.1. Assume that E has CM by the ring OK of integers in K. The potentially good ordinary
assumption on p implies that p splits in K, i.e., pOK = p · p∗. The crucial part is to establish the p-adic
Birch-Swinnerton-Dyer conjecture for E over K, or more precisely, the p-adic Birch-Swinnerton-Dyer
conjecture for φ, where φ is the Hecke character over K associated with E. The proof proceeds by
considering the following two cases:

(I) If p is an odd potentially good ordinary prime, we can find a finite Galois extension F over
K such that: (1) E has good ordinary reduction at all primes above p in F ; (2) the Galois
group ∆ = Gal(F/K) is cyclic, with order dividing wK = |O×

K |, thus prime to p. Since the
algebraic descent methods in [47] are Galois-equivariant, we can apply these methods to the
elliptic curve E/F and consider the ∆-invariant part of the descent diagrams. This enables us
to establish an algebraic analogue of the Birch-Swinnerton-Dyer conjecture for E/K. The p-
adic Birch-Swinnerton-Dyer conjecture then follows from the Iwasawa main conjecture [45] and
Yager’s theorem [52]. Let EF denote the quadratic twist of E by the extension F/K. The proof
involves comparing the periods and descent data between E and EF .

(II) If p = 2, we can assume that E is a quadratic twist of X0(49) by Q(
√
D)/Q, where D ≡ 1 mod 4

is a square-free integer. We use the same notation as in (I). For α ∈ OK , let Eα denote the
group of α-division points of E(K). For any integral ideal b in OK , we define Eb = ∩α∈bEα.
Let F = K(Ep2). A fundamental result of Coates-Wiles guarantees that E has good reduction
everywhere over F , eliminating the connected component problem between Mazur modules and
Selmer groups. However, the twisted curve EF depends on the behavior of E along the extension
F/K. In this context, Choi and Coates ([9], [13], see also [23]) demonstrated that the algebraic
and analytic ranks of EF are zero, the 2-part of X(EF /K) is trivial, and the 2-part of the
refined Birch-Swinnerton-Dyer formula for EF holds. Consequently, the arithmetic of E/K is
equivalent to that of E/F in the sense of the 2-part Birch-Swinnerton-Dyer conjecture. Let Fcyc

be the cyclotomic Z2-extension over F , and let SelE(Fcyc)p denote the p-power Selmer group of E
over Fcyc. Define Γ = Gal(Fcyc/F ). Using a variation of Greenberg’s methods, we can prove the
non-existence of non-zero finite Γ-submodules in the Pontryagin dual of SelE(Fcyc)p. Therefore,
Schneider’s descent methods are applicable to E/F , enabling us to establish an algebraic analogue
2-adic Birch-Swinnerton-Dyer formula for E/K. The 2-adic Birch-Swinnerton-Dyer conjecture
follows by the Iwasawa main conjecture [32] and an extension of Yager’s theorem to p = 2 [35].
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Once the p-adic Birch-Swinnerton-Dyer formula has been established, Theorem 1.1 follows in the
standard manner, utilizing both the complex and p-adic Gross-Zagier formulae ([7], [53]).

It is worth noting that, using our first approach–specifically, the isogeny invariance of the product
for the algebraic 2-adic L-functions and complex periods of abelian varieties–we can establish a more
general case for the algebraic analogue of the 2-adic Birch-Swinnerton-Dyer formula for CM elliptic curve
E over a finite abelian extension F0 over K satisfying Shimura’s conditions, when E has good ordinary
reduction at all primes above 2. This result holds provided we can find a quadratic extension F/F0 such
that E/F has good reduction everywhere, EF has analytic rank zero, and F/F0 is unramified at all
primes above 2. In a forthcoming paper [34], we will generalize Yager’s theorem to all primes that split
in a general imaginary quadratic field K. We will also employ a method introduced by Perrin-Riou [42],
which uses universal norms to handle the algebraic descent formula, thereby resolving the issue of finite
submodules

1.4. Applications and Concrete Examples. Let SelE(Q)2 denote the 2-power Selmer group of E
over Q, and let corankZ2 SelE(Q)2 be the Z2-rank of the Pontryagin dual of SelE(Q)2. Combining with
the 2-converse theorem (proven in [5], [3], see also [6], [50]), Theorem 1.1 implies the following:

Theorem 1.2. Let E be an elliptic curve defined over Q with complex multiplication. Assume that E
has good ordinary reduction at 2. If corankZ2 SelE(Q)2 = 1, then E(Q) has rank 1 and X(E/Q) is finite.
Moreover, the 2-part of the refined Birch-Swinnerton-Dyer formula of E holds.

In practice, using 2-descent method, computing the root number ϵ(E/Q), and applying the 2-parity
theorem of Dokchitser brothers (see [20]), one can easily verify the corank condition in the above theorem.
As a result, Theorem 1.2 also implies several earlier results in [14].

Next, we present several examples. The following theorem establishes that there are infinitely many
elliptic curves over Q of rank one, whose conductors possess arbitrarily many prime factors, for which
the full Birch-Swinnerton-Dyer conjecture holds.

Theorem 1.3. Let n ≡ 5 mod 8 be a square-free positive integer, whose prime factors are all congruent
to 1 modulo 4. Assume that Q(

√
−n) has no ideal class of order 4. Then the full Birch-Swinnerton-Dyer

conjecture holds for the elliptic curve y2 = x3 − n2x over Q. In particular, for any prime p ≡ 5 mod 8,
the full Birch-Swinnerton-Dyer conjecture holds for y2 = x3 − p2x.

Proof. An induction argument (see [49] and [51]) shows the Heegner point associated to y2 = x3 − x
and Q(

√
−n) has infinite order. Moreover, by applying the Gross-Zagier formula [7], the 2-part of the

refined Birch-Swinnerton-Dyer formula for the curve y2 = x3−n2x is also verified. As a result, both the
analytic rank and Mordell-Weil rank of y2 = x3−n2x over Q are equal to one, and the Shafarevich-Tate
group of y2 = x3 − n2x is finite.

By the theorems of Perrin-Riou [40] and Kobayashi [33], the p-part of the refined Birch-Swinnerton-
Dyer formula holds for all primes p ∤ 2n. Additionally, by Theorem 1.1, the p-part of the refined
Birch-Swinnerton-Dyer formula holds for all primes p dividing n, since all primes p ≡ 1 mod 4 are
potentially good ordinary primes for the curve y2 = x3 − n2x. □
Example 1.4. The number p = 1493 is the smallest prime congruent to 5 modulo 8 such that the elliptic
curve y2 = x3 − p2x has rank one and a non-trivial Shafarevich-Tate group. Specifically, the associated
Heegner point (x, y) has coordinates

x =
2456153549914721493968975459422696932728951498371630131453

2958501182854207571944468687561920064681205358510529
,

y =
121725780668263596873618123810557983972375660184180439465365335709906181098721585260100

160919109605479862871753246473210772682219745687839109456974711787796868892833
.

It can be shown that the free part of the Mordell-Weil group of the elliptic curve y2 = x3 − p2x over Q
is generated by [

1674371133

744769
, −51224214734700

642735647

]
.

By Theorem 1.3, it follows that the Shafarevich-Tate group of y2 = x3 − p2x is isomorphic to (Z/3Z)2.

The remainder of this paper is organized as follows. In Section 2, we establish the notation and
conventions. Sections 3 through 7 are dedicated to proving the p-adic Birch-Swinnerton-Dyer conjecture
for E/K. In Section 8, we introduce both the complex and p-adic Gross-Zagier formulae, and in Section
9, we complete the proof of Theorem 1.1. The first appendix (Section 10) provides a detailed proof
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for the non-existence of certain non-trivial finite submodules using Greenberg’s methods. In the second
appendix, we employ variants of the algebraic p-adic L-functions and periods under isogeny, as developed
by Perrin-Riou and Schneider, to offer an alternative proof of the algebraic analogue of the p-adic Birch-
Swinnerton-Dyer conjecture for p = 2.

Acknowledgement We dedicate this paper to the memory of John Coates, whose unwavering
encouragement and support have been instrumental in our exploration of Iwasawa theory for elliptic
curves with complex multiplication, particularly in the case of the prime p = 2 and its applications to
analytic rank one. It was John’s insight that highlighted the role of the finite submodule issue in the
CM Iwasawa theory at p = 2. In this paper, we pay tribute to his pioneering contributions, recognizing
the profound and lasting impact his groundbreaking research has had on our own.

2. Notation and conventions

2.1. General Notation.
• For a field k, we denote by k an algebraic closure of k.
• For a finite set S, we denote by |S| the cardinality of S.
• For an abelian group A and a ring R, we define AR := A⊗Z R as an R-module. For two abelian

groups A1 and A2 such that A1 ⊂ A2 with finite index, we denote by [A2 : A1] the index of A1

in A2.
• For an abelian group A and a positive integer n, we define An := ker(A

n−→ A). For a prime p,
we set A(p) = ∪n≥1Apn .

• For an abelian group A, we denote by Ator the torsion subgroup of A. We set A/tor = A/Ator.
Additionally, we define Adiv to be the divisible part of A, and set A/div = A/Adiv.

• For a commutative ring R, we denote by R× the group of units in R.

2.2. Notation in Number theory.
• For any number field (resp. local field) F, we denote by OF the ring of integers in F. For a prime

ideal p in a number field F, we write Fp for the completion of F at p. We denote by Cp the
completion of Qp. As usual, we set Zp = OQp .

• Fix embeddings
ι∞ : Q→ C and ιp : Q→ Cp

such that ιp = ι ◦ ι∞ for an isomorphism ι : C ∼−→ Cp.
• Let ordp(·) denote the additive valuation on Cp, normalized by ordp(p) = 1.
• Fix a nontrivial additive character ψ : Qp → C×

p of conductor Zp. For a character χ : Q×
p → C×

p

of conductor pn with n ≥ 0, define the root number

τ(χ, ψ) = p−n

∫
vp(t)=−n

χ−1(t)ψ(t)dt,

where dt is the Haar measure on Qp normalized so that Vol(Zp, dt) = 1.
• Let E be an elliptic curve defined over a number field K, and let p be a potentially good ordinary

prime for E. Denote by (·, ·)∞ the normalized Néron -Tate height pairing, and by (·, ·)p the p-
adic height pairing associated with the cyclotomic character over K. Suppose P1, · · · , Pr ∈ E(K)
form a Q-basis of E(K)Q. Then the (real) regulator and the p-adic regulator of E(K) are defined
by

R∞(E/K) =
det((Pi, Pj)∞)r×r

[E(K) :
∑

i ZPi]2

(
resp. Rp(E/K) =

det((Pi, Pj)p)r×r

[E(K) :
∑

i ZPi]2

)
.

• Let K be an imaginary quadratic number field. For a character χ of K̂×, denote its conductor
by fχ ⊂ OK . For an elliptic curve E over K with complex multiplication by OK , let fE denote
its conductor, i.e., the conductor of the associated Hecke character φE = φ. For nonzero integral
ideals g and a of OK , let g(a) denote the part of g relatively prime to a. Let D be the completion
of the maximal unramified extension of Zp, and let Dχ be the finite extension of D generated by
the values of χ. Let L/K be an abelian extension with Galois group G = Gal(L/K) ∼= ∆′ × Γ,
where ∆′ a finite group and Γ ∼= Zd

p for some nonnegative integer d ≤ 2. For any D[[G]]-module
M and character χ of ∆′, define the χ-isotypic component of M as

Mχ := M⊗D[[G]],χ Dχ[[Γ]],
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where the tensor product is taken via the character χ : ∆′ → D×
χ , extended to D[[G]]→ Dχ[[Γ]].

3. Descent theory over the fields K and F

Throughout this section, we assume p = 2. Let A = X0(49), and let E = A(D) denote the quadratic
twist of A by the quadratic extension Q(

√
D)/Q, where D is a square-free integer satisfying D ≡

1( mod 4). Recall that 2OK = p · p∗, and let F = K(Ep2). In the following, we always consider E as
defined over K.

For any element α ∈ OK , we denote by Eα the group of α-torsion points of E(K). For any integral
ideal b in OK , we define Eb := ∩α∈bEα, E(b) := ∪n≥1Ebn .

Let M/K be any algebraic extension. The p-power Selmer group of E over M is defined via the exact
sequence

0→ SelE(M)p → H1(M,E(p))→
∏
v

H1(Mv, E)

where the product is taken over all finite places v of M . Let S be a finite set of finite places of M . The
relaxed Selmer group at S is defined by the exact sequence:

0→ SelSE(M)p → H1(M,E(p))→
∏
v/∈S

H1(Mv, E)

where the product ranges over all finite places v of M not lying above any place in S.
Let P denote the set of the primes lying above p, and let B denote the set of the primes where E has

bad reduction. Set W = P ∪ B. With these definitions, we obtain an exact sequence

(3.1) 0→ SelE(K)p → SelWE (K)p
r−→
∏
v∈W

H1(Kv, E)p∞ → coker(r)→ 0.

Let φ denote the Hecke character associated to E over K.

Lemma 3.1.
(1) If v ∈ B then H1(Kv, E)(p) is finite of order 2.
(2) The module H1(Kp, E)(p) is finite of order equal to |1− φ(p)/2|−1

p , where | · |p denotes the p-adic
absolute value on Kp, normalized such that |ϖ|−1

p = 2 for a uniformizer ϖ of Kp.

Proof. The first result follows from Tate local duality and the fact that E has purely additive reduction
at all bad primes v ∈ B, with the exponent of the component group of the Néron model of E at each
such v equal to 2 (see [30, Proposition 4.5]). The second statement follows by the same argument as in
[10, Lemma 1]. □

Let Op = OKp
, and let M be a discrete Op-module. We denote by M∧ the Pontryagin dual of M

with coefficients in Op, defined by
M∧ := HomOp

(M,Kp/Op).

We define the (Op-)corank of M as the Op-rank of M∧.

Corollary 3.2. The divisible parts of the Selmer groups SelE(K)p and SelWE (K)p are isomorphic. Assum-
ing that X(E/F )(p) is finite, the coranks of these modules are both equal to the Op-rank of E(K)⊗OK

Op.

For a discrete Op-module M, recall that we define M/div to be the quotient of M by its divisible part.
If M∧ is a finitely generated Op-module, then M/div is finite.

Since E has good ordinary reduction at p, from [10, Lemma 1], we have the isomorphism:

E(Kp)⊗Op∗ ' Ẽ(κp)(2),

where κp is the residue field of Kp, Ẽ is the reduction of E modulo p and the isomorphism is given
by the reduction modulo p. Let C denote the quotient of the image of E(K)/tor in Ẽ(κp)(2) under the
reduction map, modulo the image of E(K)(p∗).

Proposition 3.3. Assume that E has good reduction at all primes of K lying above 2. If X(E/K)(p)
is finite, then we have

(3.2)
∣∣∣∣(SelWE (K)p

)
/div

∣∣∣∣ = |X(E/K)(p)| · |(1− φ(p)/2) · |C||−1
p · 2(|B|−1).
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Proof. Write π for a generator of p, thus π is a generator of p∗. For each integer n ≥ 1, we have the
short exact sequence

(3.3) 0→ SelE(K)[πn]→ SelWE (K)[πn]→
∏
v∈W

H1(Kv, E)πn ,

and we write un for the right-hand homomorphism in this sequence. Here we write SelE(K)[πn] (resp.
SelWE (K)[πn]) for the Selmer group defined using the Galois module Eπn . On the other hand, by the
definition of the Selmer group SelE(K)[πn], we have the following natural homomorphism

(3.4) sn : SelE(K)[πn]→
∏
v∈W

E(Kv)/π
nE(Kv).

Note that the right hand groups in (3.3) and (3.4) are dual to each other by Tate local duality. By the
modified Poitou–Tate sequence (see, for example, the Appendix of [39] or [1]), we conclude that, for all
n ≥ 1, Coker(un) is equal to the Pontryagin dual of Im(sn). Hence, noting that r is the inductive limit
of the maps un as n→∞, it follows that Coker(r) is dual to the image of the map s∞ = lim←−n

sn, where

(3.5) s∞ : lim←−
n

SelE(K)[πn]→
∏
v∈W

E(Kv)⊗O Op∗ .

Since X(E/K)(p∗) is finite, it follows that lim←−n
SelE(K)[πn] = E(K) ⊗OK

Op∗ . Applying the proof of
Lemma 3.1, we obtain the isomorphism∏

v∈W
E(Kv)⊗O Op∗ '

∏
v∈W

E(Kv)(p
∗).

Noting that p∗ is not contained in W, E has additive reduction at v ∈ B, we can show that the non-
torsion points in E(K) maps to zero in

∏
v∈B E(Kv)⊗OOp∗ . By [10, Lemma 1], the only contribution of

the non-torsion points in E(K) is given by the image of E(K)/tor in Ẽ(κp)(2) under the reduction map.
Since s∞ is injective on torsion part of E(K) ⊗ Op∗ , we conclude that the image of s∞ is equal to the
group generated by E(K)(p∗) and C. From the Lemma 3.4 below, we obtain that E(K)(p∗) = E(K)p∗ .
Now the proposition follows by a simple diagram chasing in the exact sequence (3.1).

□
We recall that

F = K(Ep2) and ∆ = Gal(F/K).

Lemma 3.4. The elliptic curve E has good reduction everywhere over F .

Proof. A detailed proof can be found in [9, Lemma 2.1]. □
We write

αF : H1(K,E(p))→ H1(F,E(p))∆

for the restriction map.

Proposition 3.5. The map αF induces an exact sequence
(3.6) 0→ H1(∆, Ep2)→ SelWE (K)p

α−→ SelPE(F )
∆
p → 0.

In particular, both groups SelWE (K)p and SelPE(F )
∆
p have the same corank.

Proof. Consider the following exact commutative diagram:

(3.7) 0 // SelWE (K)p

α

��

// H1(K,E(p))

��

// ∏
v/∈W H1(Kv, E)p∞

j

��
0 // SelPE(F )

∆
p

// H1(F,E(p))∆ // (
∏

w/∈P H
1(Fw, E)p∞)∆.

For v /∈ W , classical theorems of unramified cohomology (see [36, Proposition 4.3]) give us
H1(Gal(Fw/Kv), E(Fw)) = 0.

Thus, the vertical map j on the right hand side of (3.7) is injective. For each prime v ∈ B, from the
Tate local duality, the fact that E has additive reduction at each v and v is totally ramified in F , we
can show that the restriction map

H1(Kv, E)p∞ → H1(Fw, E)p∞
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is zero, and thus, the image of α is contained in SelPE(F )p. By applying the snake lemma to the
commutative diagram (3.7), we obtain the desired exact sequence except for the surjectivity of α. The
surjectivity follows by the same method as [23, Lemma 3.7]. Therefore the proposition follows.

□

Proposition 3.6. Assume that E has good reduction at all primes of K above 2. Let F = K(Ep2).
Assume that X(E/K)(2) is finite, then the coranks of the three modules SelE(K)p, SelWE (K)p and
SelPE(F )

∆
p are the same and are equal to rankOK

E(K), and we have

(3.8)
∣∣∣∣(SelPE(F )∆p )

/div

∣∣∣∣ = |X(E/K)(p)| · 2(|B|−2) · |(1− φ(p)/2) · |C||−1
p .

Proof. One simply combines Propositions 3.3 and 3.5, noting that, we have E(K)(p∗) = Z/2Z, and
H1(∆, E(F )(p)) = Z/2Z. □

The above proposition demonstrates that SelPE(F )∆p is closely related to the arithmetic information of
E/K. Let δ be a generator of ∆. By considering the exact sequence

0→ SelPE(F )
∆
p → SelPE(F )p → (1− δ)SelPE(F )p → 0,

it follows that, in general, SelPE(F )∆p is not equal to the entire Selmer group SelPE(F )p. However, as noted
in [9], by applying the 2-adic Iwasawa theory to the Coates-Wiles Z2-extension over F , one can show
that the error term (1− δ)SelPE(F )p vanishes. This important result is recorded in the following lemma.

Lemma 3.7. We have
SelPE(F )

∆
p = SelPE(F )p.

Proof. One can refer to [9, Corollary 2.12] for a detailed proof. □

Define XP(E/F )(p) as the kernel of the map

H1(F,E)(p)→
∏
v/∈P

H1(Fv, E)(p).

Then, the Selmer group SelPE(F )p fits into the middle of the exact sequence

(3.9) 0→ E(F )⊗ (Kp/Op)→ SelPE(F )p →XP(E/F )(p)→ 0.

Let EF be the twist of E by the quadratic extension F/K, let L(EF /K, s) be the L-series of EF over
K.

Theorem 3.8. We have
(1) ords=1L(E

F /K, s) = 0, and rankZE
F (K) = 0.

(2) X(EF /K) is finite, and the refined Birch-Swinnerton-Dyer formula for EF holds. Moreover,
X(EF /K)(2) is trivial.

The non-vanishing of L(EF /K, 1) and the triviality of X(EF /K)(2) were established in [9], [13] or
[23]. The full Birch-Swinnerton-Dyer formula was proven in [23] extending Rubin’s results [45] (see also
[4]).

From Theorem 3.8, Proposition 3.6, Lemma 3.7 and the exact sequence (3.9), we obtain the following
corollary:

Corollary 3.9. Keeping the same assumptions as Proposition 3.6, we have∣∣XP(E/F )(p)
∣∣ = |X(E/K)(p)| · 2(|B|−2) · |(1− φ(p)/2) · |C||−1

p .

Proposition 3.10. The index of X(E/F )(p) in XP(E/F )(p) is finite. Moreover, we have

[XP(E/F )(p) : X(E/F )(p)] =
∣∣|E(K)(p∗)|−1 · (1− φ(p)/2) · |C|

∣∣−1

p
.
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Proof. The descent sequence
0→ E(F )⊗ (Kp/Op)→ SelE(F )p →X(E/F )(p)→ 0

and exact sequence (3.9) imply the following exact commutative diagram

(3.10) 0 // E(F )⊗ (Kp/Op)

j1

��

// SelE(F )p

��

// X(E/F )(p)

��

// 0

0 // E(F )⊗ (Kp/Op) // SelPE(F )p // XP
E(F )(p) // 0.

Since E has good reduction everywhere over F , the same proof as in Proposition 3.3 shows that the
index of SelE(F )p in SelPE(F )p is finite. Moreover, we have

(3.11) [SelPE(F )p : SelE(F )p] =
∣∣|E(K)(p∗)|−1 · (1− φ(p)/2) · |C|

∣∣−1

p
.

The following facts are used to derive the above equality:
• Since E has good reduction at p, the formal group associated to E over Kp is the Lubin-Tate

formal group. Therefore F = K(Ep2) is a totally ramified extension over K at p. So that the
residue field of F at p is equal to that of Kp.

• Let φE/F denote the Hecke character of E/F . Then φE/F = φ ◦NF/K .
• Since p∗ is unramified in F/K, E(F )(p) = Ep2 and the Weil pairing, we obtain

E(F )(p∗) = E(K)(p∗) = Z/2Z.
• From Lemma 3.7, the non-torsion points of E(F ) comes exactly from the non-torsion points of
E(K), so C remains unchanged for E/F .

In the diagram (3.10), since the map j1 is the identity map and the middle vertical map is injective,
the index of X(E/F )(p) in XP(E/F )(p) is finite. Thus, from (3.11), the equation in the proposition
follows. □
Corollary 3.11. Under the same assumptions as Proposition 3.6, we have
(3.12) |X(E/F )(p)| = |X(E/K)(p)| · 2(|B|−1).

The proof of this corollary follows directly from Proposition 3.10 and Corollary 3.9.

4. Iwasawa theory for E over cyclotomic Zp-extensions

Let E be an elliptic curve defined over K with complex multiplication by OK . Assume p is a prime
which splits in K. We assume either E has potentially good ordinary at p when p 6= 2 or is the same as
Section 3 when p = 2. Let F be a finite cyclic extension over K such that E has good ordinary reduction
over F at all primes above p. One can refer to [43] for the existence of such F .

For any number field F, we let Fcyc denote the cyclotomic Zp-extension over F. Let Fn be the unique
subfield in Fcyc such that Gal(Fn/F) is isomorphic to Z/pnZ. Assume F contains K, we define

SelE(Fcyc)p = lim
→n

SelE(Fn)p

where the inductive limit is taken with respect to the restriction maps.
Let Γ = Gal(Fcyc/F ) and let ΛΓ be the Iwasawa algebra defined as ΛΓ = lim←−n

Zp[Γ/Γn], where Γn is
the unique subgroup in Γ with index pn. For a discrete ΛΓ-module M, we set M∧ to be the Pontryagin
dual of M, i.e., M∧ = HomZp(M,Qp/Zp). The module M is cofinitely generated over ΛΓ (resp. Zp) if
M∧ is a finitely generated ΛΓ (resp. Zp)-module. We say that M is a cotorsion ΛΓ-module if M∧ is a
torsion ΛΓ-module. It is well-known that SelE(Fcyc)p is a cofinitely generated ΛΓ-module. Throughout
this section we assume that SelE(Fcyc)p is a cotorsion ΛΓ-module.

Let ∆ = Gal(F/K). We know SelE(Fcyc)p is also a ∆-module. For each character η of ∆, we
define SelE(Fcyc)

η
p to be the η-part of SelE(Fcyc)p. If η is the trivial character, SelE(Fcyc)

η
p is equal

to SelE(Fcyc)
∆
p , which is the submodule consisting of elements in SelE(Fcyc)p fixed under the action of

∆. For each η the module SelE(Fcyc)
η
p is a finitely generated cotorsion ΛΓ-module. From the structure

theorem for finitely generated modules over ΛΓ, we define cηF to be a generator of the characteristic ideal
of
(
SelE(Fcyc)

η
p

)∧. We denote by cF a generator of the characteristic ideal of (SelE(Fcyc)p)
∧. Both cηF

and cF are well-defined up to units in the Iwasawa algebra ΛΓ. We make the following convention: for a
discrete ΛΓ-module M, the characteristic ideal of M means the characteristic ideal of M∧; for a Op-(resp.
Zp-) module M, we write the same notation M∧ to denote the Op-(resp. Zp-)Pontryagin dual of M.

8



Proposition 4.1. Assume that
• if p 6= 2, the order of ∆ is prime to p;
• if p = 2, let F = K(Ep2).

Then we have cK = c1F and
cF = cK ×

∏
η ̸=1

cηF

where the product runs over all nontrivial characters of ∆. In the above equations, the equalities mean
up to units in ΛΓ.

We omit the proof for the case p 6= 2, since it follows directly from the fact that the action of ∆ on
SelE(Fcyc)p is semi-simple. In the follows we assume that p = 2. The first equality follows from the
below lemma.

Lemma 4.2. The characteristic ideals of both SelE(Fcyc)
∆
p and SelE(Kcyc)p are equal.

Proof. We consider the following exact commutative diagram

0 // SelE(Kcyc)p

j1

��

// H1(Kcyc, E(p))

j2

��

// ∏
vH

1(Kcyc,v, E)(p)

j3
��

0 // (SelE(Fcyc)p)
∆ // H1(Fcyc, E(p))∆ //

(∏
wH

1(Fcyc,w, E)(p)
)∆

.

It is obvious that both kernel and cokernel of j2 are finite. In fact, by a Theorem of Mazur ([36]), we
know E(Fcyc)(p) is finite. Write j3 as a product (jv)v where v runs over all primes of Kcyc. If v is a prime
not lying above p or at which E has good reduction, from [36, Proposition 4.3] jv is injective. As every
non-archimedean prime is finitely decomposed in Kcyc and the kernel of each jv at either a bad prime v
or a prime v above p is finite, we know the kernel of j3 is finite. Thus both the kernel and cokernel of j1
are finite, the lemma then follows.

□
Recall that pOK = pp∗ and note the relation

SelE(Fcyc)p = SelE(Fcyc)p ⊕ SelE(Fcyc)p∗ ,

as Gal(Fcyc/K)-modules. Let cηF,p (resp. cηF,p∗) denote a generator of the corresponding characteristic
ideals of SelE(Fcyc)

η
p (resp. SelE(Fcyc)

η
p∗). We write cF,p (resp. cF,p∗) in the similar meaning for

SelE(Fcyc)p (resp. SelE(Fcyc)p∗). Then the proof of the second equation in Proposition 4.1 reduces to
showing the below equality

(4.1) cF,p =
∏
η

cηF,p.

To prove the above equation, we now introduce a Z2
2-extension over F . Let F = Fcyc(E(p)) and put Γ−

for Gal(F/Fcyc). Let ΓF = Gal(F/F ) and ΛF the Iwasawa algebra of ΓF . It is easy to see that ΓF is
isomorphic to Γ− × Γ which is also isomorphic to Z2

2. We can define the Selmer group SelE(F)p in a
similar way as SelE(Fcyc)p. The group SelE(F)p is a ΛF -module. Let K be the unique Z2

2-extension over
K. We identify ∆ with Gal(F/K). Then SelE(F)p is also a Zp[∆]-module. For each character η of ∆ we
let SelE(F)ηp denote the η-part of SelE(F)p.

Lemma 4.3. For each character η of ∆, we have

SelE(Fcyc)
η
p =

(
SelE(F)ηp

)Γ−
.

Proof. Let eη be a Op-basis of the rank one Op-module corresponding to η. Then

SelE(F)ηp ' (SelE(F)p ⊗ eη)∆ .
Since Γ− lies in the kernel of η and the actions of ∆ and Γ− are commutative, we obtain(

SelE(F)ηp
)Γ− '

(
SelE(F)Γ−

p

)η
.

Then we reduce to show that SelE(Fcyc)p ' SelE(F)Γ−
p . This follows from a similar proof as in Lemma

4.2 by noting H1(Γ−, E(p)) = 0 and that E has good reduction everywhere over Fcyc. □
We come back to the proof of Proposition 4.1.
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Proof of Proposition 4.1. Let MF be the maximal abelian pro-2 extension over F which is ramified only
at the primes above p and put X(F) = Gal(MF/F). From [39] (or an extension of [10] to this two
variable setting) we obtain the isomorphism

SelE(F)p ' Hom(X(F), Ep∞).

A similar proof as Lemma 4.3 implies an invariant of the above Selmer group is isomorphic to the Selmer
group of E over the Coates-Wiles Z2-extension over F which is ramified only at primes above p. From
the works on µ-invariants (see [8], [38] and [16]), this Selmer group is a cofinitely generated Z2-module.
Thus SelE(F)p is cotorsion over ΛF and has characteristic ideal which is prime to 2. Write CF , resp.
Cη

F for a generator of the characteristic ideals of the Pontryagin dual of SelE(F)p, resp. SelE(F)ηp. Here
η is any character of ∆. Since the characteristic ideal is prime to 2 all these elements are the same after
taking tensor product with Q2, therefore we obtain

CF =
∏
η

Cη
F .

Noting Lemma 4.3, we know that the equation (4.1) is the image of the above equation under the natural
map ΛF → ΛΓ. Since we have shown cK = c1F , the Proposition 4.1 now follows. □

To lighten the notation we let E′ = EF .
Lemma 4.4. We have

SelE(Fcyc)
η
p ' SelE′(Fcyc)

∆
p .

Proof. Recall eη in the proof of Lemma 4.3. From the definition on twist of elliptic curves we know
E(p)⊗ eη ' E′(p).

(As GK-modules.) Therefore we obtain
H1(Fcyc, E

′(p))∆ ' (H1(Fcyc, E(p))⊗ eη)∆ ' H1(Fcyc, E(p))η.

This isomorphism also holds locally for all non-archimedean primes of Fcyc, thus the lemma follows by
the definition of Selmer groups. □
Corollary 4.5. Write cF,E for cF . Let cK,E′ (resp. cK,E) be a generator of the characteristic ideal of
SelE′(Kcyc)p (resp. SelE(Kcyc)p). Then cF,E = cK,E′ · cK,E. (up to p-adic units.)

This corollary follows from Proposition 4.1, Lemmas 4.2, 4.4 and the fact that the Pontryagin dual of
SelE′(Fcyc)

∆
p and SelE′(Kcyc)p are quasi-isomorphic.

5. Algebraic analogue of a Birch-Swinnerton-Dyer formula of E′ over K.

We keep the notation and setting as in Section 3 throughout this section. As usual, we let χcyc denote
the cyclotomic character over K. Because of Theorem 3.8, SelE′(K)2 is finite. From Mazur’s control
theorem (see [36] or [26]) and the structure theorem of finitely generated modules over ΛΓ, SelE′(Kcyc)2
is a finitely generated cotorsion ΛΓ-module. Let cK,E′ be a generator of the characteristic ideal of
SelE′(Kcyc)2. We define the Iwasawa L-function of E′ with respect to χcyc as follows:

fE′(s) = χ1−s
cyc (cK,E′) (s ∈ Z2).

By Theorem 3.8, fE′(s) is nonzero at s = 1. In this section, we will compute the leading term, i.e., the
constant term of fE′(s) at s = 1. Recall that φη is the Hecke character associated to E′ over K.
Proposition 5.1. Up to a 2-adic unit, we have

(5.1) fE′(1) =
1

16
·

(
1− φη(p∗)

2

)2

.

In the following part of this section, we use the Birch-Swinnerton-Dyer formula of E′ and the Iwasawa
main conjecture to prove the proposition. Consider the decomposition

SelE′(Kcyc)p = SelE′(Kcyc)p ⊕ SelE′(Kcyc)p∗

The Z2-modules SelE′(Kcyc)p and SelE′(Kcyc)p∗ are finitely generated cotorsion ΛΓ-modules. Let cK,E′,p

(resp. cK,E′,p∗) be a generator of the characteristic ideal of SelE′(Kcyc)p (resp. SelE′(Kcyc)p∗). We define
fE′,p(s) = χ1−s

cyc (cK,E′,p) and fE′,p∗(s) = χ1−s
cyc (cK,E′,p∗) (s ∈ Z2).

Then fE′(s) = fE′,p(s) · fE′,p∗(s). (Up to a unit in the Iwasawa algebra.)
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Proof of Proposition 5.1. Restricting the two variable Iwasawa main conjecture (see [32]) and Yager’s
theorem (see [52], [35]) to Kcyc, fE′,p(s) (resp. fE′,p∗(s)) is equal to the Katz measure in [17, Theorem
II 4.14] evaluating at φE′χ1−s

cyc (resp. φE′χ1−s
cyc ). Write ΩE′ for the period associated to E′. Denote by

φE′ = φη the Hecke character associated to E′ over K. By the interpolation formula in [17, Theorem II
4.14] we obtain (up to 2-adic units)

fE′,p(1) =

(
1− φE′(p∗)

2

)
· L(φE′ , 1)

ΩE′
.

To handle the Selmer group SelE′(Kcyc)p∗ , we apply the complex conjugation on E′ to get an elliptic
curve E . Write K ′

cyc the conjugated field of Kcyc under complex conjugation. Here we should note that
since E′ is defined over K, the field K ′

cyc is not equal to Kcyc. Then we reduce to calculating the Iwasawa
function fE,p associated to SelE(K

′
cyc)p. Note that E has only bad reduction at p∗, and that the period

ΩE = ΩE′ . Applying the same argument as above, we obtain (up to 2-adic units)

fE′,p∗(1) =

(
1− φE′(p∗)

2

)
· L(φE′ , 1)

ΩE′
.

Notice that the 2-part of refined Birch Swinnerton-Dyer formula of E′ is given as

L(E′/K, 1)

ΩE′ · ΩE′
=
|X(E′/K)(2)| · tp(E′/K)

|E′(K)(2)|2

(up to 2-adic units.). From [9] or [23], we know the above equation is valid. Here tp(E′/K) denotes
the Tamagawa number of E′ at p. Thus the proposition follows from the facts that X(E′/K)(2) = 0,
tp(E

′/K) = 4 (see [23]), |E′(K)(2)| = 8 and φE′ = φη. □

6. Algebraic p-adic height formula for E over K

Let E be an elliptic curve over K with complex multiplication by OK . Let p be a potentially good
ordinary prime for E. We assume that E has good ordinary reduction at p when p = 2, i.e., E has
good ordinary reduction at both p and p∗. For any finite field extension F/K, we define Fcyc to be the
cyclotomic Zp-extension over F. Put ΓF = Gal(Fcyc/F) and denote Λ(ΓF) by the Iwasawa algebra of ΓF.
When F = K, we simply write Γ (resp. ΛΓ) for ΓF (resp. Λ(ΓF)). Let SelE(Fcyc)p be the p-power Selmer
group of E over Fcyc. It is clear that SelE(Fcyc)p is a cofinitely generated Λ(ΓF)-module. We assume
further that SelE(Fcyc)p is cotorsion over Λ(ΓF). Write cF for a generator of the characteristic ideal of
SelE(Fcyc)p. Let χcyc,F be the cyclotomic character of Gal(Fcyc/F). We define

fE/F(s) = χ1−s
cyc,F(cF) (s ∈ Zp)

to be the Iwasawa L-function of E over F with respect to χcyc,F. When F = K, we omit F in the
subscripts of fE/F and χcyc,F. Recall that φ is the Hecke character over K associated to E. The aim of
this section is to prove the following

Theorem 6.1. Assume that E(K)⊗OK
K has dimension one over K and X(E/K)(p) is finite. Then

SelE(Kcyc)p is a cotorsion ΛΓ-module and the vanishing order of fE(s) at s = 1 is equal to 2. Moreover,
denote by f∗E(1) the coefficient of the leading term of fE(s) at s = 1, we have

(6.1) f∗E(1) = Cp · |X(E/K)(p)| ·Rp(E/K) · (1− φ(p))4(1− φ(p∗))4.

(The equality holds up to p-adic units.) Here Cp is equal to 4|B| or 1 according as p = 2 or p is odd.
Recall that B denotes the set of bad primes for E over K.

We postpone the proof of the odd case. From now on, we assume p = 2, thus E is a twist of
A = X0(49) by the extension Q(

√
D) over Q. As always we assume the integer D ≡ 1 mod 4. Recall

that 2OK = p·p∗ and F = K(Ep2). From Lemma 3.4, the elliptic curve E has good reduction everywhere
over F . By the assumption that E(K) has OK-rank one and X(E/K)(2) is finite, from Theorem 3.8
we know dimKE(F )⊗OK

K = 1 and X(E/F )(2) is finite.
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Proposition 6.2. Keep the above notation. The Selmer group SelE(Fcyc)p is a cotorsion Λ(ΓF )-module
and the vanishing order of fE/F (s) at s = 1 is two. Moreover, denote by f∗E/F (1) the coefficient of the
leading term of fE/F (s) at s = 1, we have

(6.2) f∗E/F (1) = |X(E/F )(2)| ·Rp(E/F ) ·
∏
v|p

|Ẽ(κv)|2.

Here the equality is up to 2-adic units. The curve Ẽ is the reduction curve of E at v and κv is the residue
field of Fv.

Proof. Since E has complex multiplication, the p-adic height of the OK-generator of E(F ) is nonzero (see
[2]). Therefore, by the same proof as [47, Theorems (1.1), (2.2′)], SelE(Fcyc)p is a cotorsion Λ(ΓF )-module
and the vanishing order of fE/F (s) at s = 1 is equal to two. To show the formula (6.2), Schneider’s
proof works only when F is totally imaginary, and we can show (SelE(Fcyc)p)

∧ has no nonzero finite
sub ΛΓ-modules (see [47, Pages 338 and 340]). We will prove this last statement in the appendix using
methods due to Greenberg. Here, we should also note that the proof of Schneider on comparison between
the algebraic and analytic p-adic heights (see [47, §6 and 7, especially Proposition (6.2)]) still works for
p = 2. From these reasons, the proposition follows from the equality in [47, Theorem 2.2′] using the fact
that E has good reduction everywhere over F . □

Since X(E/F )(2) is finite, Cassels’s pairing on X(E/F )(2) implies that |X(E/F )(p∗)| = |X(E/F )(p)|.
From Corollary 3.11 and

X(E/F )(2) = X(E/F )(p)⊕X(E/F )(p∗),

we have

(6.3) |X(E/F )(2)| = |X(E/K)(2)| · 4|B|−1.

Recall that the torsion free part of E(F ) (resp. E(K)) is an OK-module of rank one.

Lemma 6.3. Any OK-generator of E(F ) comes from an OK-generator of E(K).

Proof. Denote by δ a generator of ∆ = Gal(F/K). Noting the exact sequence

0→ E(F )⊗OK
(Kp/Op)→ SelPE(F )p →XP(E/F )(p)→ 0

and Lemma 3.7, we obtain

(E(F )⊗OK
(Kp/Op))

∆
= E(F )⊗OK

(Kp/Op).

Let P1 be an OK generator of E(F ) and put π to be a generator of p. Since δ(P1⊗(1/πm)) = P1⊗(1/πm)
we obtain

δ(P1)− P1 ∈ πmE(F )

for all m ∈ Z+. As any nonzero point in E(F ) is finitely divisible, we must have δ(P1) = P1. Therefore,
the lemma follows. □

Lemma 6.4. Recall that E is defined over Q and we view E defined over K. We can choose a point
P0 ∈ E(Q) such that [E(K)/tor : OKP0] is prime to 2. In particular, up to 2-adic units, an OK-generator
of E(K) can be taken from a point in E(Q).

Proof. Let E(K) = OK · P2 and put σ to be a generator of Gal(K/Q). Since σP2 is still a generator of
E(K) we obtain

σP2 = sP2 + T (s ∈ {±1}, T ∈ E(K)tor).

We can assume that s = 1 by changing P2 to
√
−7P2. Here we recall K = Q(

√
−7) and that

√
−7P2

is given by the action of complex multiplication. Thus σP2 = P2 + T with T ∈ E(K)2. Note that
E(K)2 = Ep∗ × Ep we denote by tp, resp. tp∗ the generator of Ep, resp. Ep∗ . We claim that either
T = 0 or T = tp + tp∗ . Admitting the claim, if σP2 = P2 + tp + tp∗ , changing P2 to P2 + tp∗ we
know that P2 is invariant under σ. Thus the claim implies the lemma. Now we prove the claim.
Otherwise, we may assume σP2 = P2 + tp. By applying σ to both sides of the equation we obtain
P2 = σ(P2) + tp∗ = P2 + tp + tp∗ , thus tp + tp∗ = 0 which is a contradiction. The case σP2 = P2 + tp∗

can be proven in a similar way, therefore the claim follows. □
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Proof of Theorem 6.1 when p = 2. In the following proof, we write ∼ to denote the equality of the quan-
tity is up to 2-adic units. From [10] (see [39]), we know that |Ẽ′(κp∗)| ∼ (1− φη(p∗)/2). Note that p is
totally ramified in E/K, p∗ is unramified in F/K, we can easily show that∏

w|p |Ẽ(κw)|

|Ẽ′(κp)||Ẽ′(κp∗)|
= (1− φ(p))2(1− φ(p∗))2.

Here, the product in the left hand side runs over all primes of F lying above p. Now, from equations
(6.2), (5.1), (6.3) and Corollary 4.5, we obtain

(6.4) f∗E(1) ∼
|X(E/K)(2)| · 4|B| · det(·, ·)p,F

|E(K)tor|2
· (1− φ(p))4(1− φ(p∗))4,

where det(·, ·)p,F is the determinant associated to p-adic height pairing on E(F )/tor ×E(F )/tor, and we
have used the fact that Rp(E/F ) =

det(·,·)p,F
|E(F )tor|2 . From Lemma 6.3, using a Z-basis for OK and applying

the relation between p-adic height pairing and p-adic height, we obtain det(·, ·)p,F ∼ htp,K(P )2. Here
htp,K(·) denotes the p-adic height over K. Noting the compatibility of p-adic height under complex
multiplication (see [39]), and the analogues between refined p-adic regulator and usual p-adic regulator
(for the complex case, see [30]), from Lemma 6.4 we obtain htp,K(P )2 ∼ det(·, ·)p,K . Thus the formula
(6.4) becomes

f∗E(1) ∼ |X(E/K)(2)| · 4|B| ·Rp(E/K) · (1− φ(p))4(1− φ(p∗))4,

where we used the relation Rp(E/K) =
det(·,·)p,K
|E(K)tor|2 . The case p = 2 of Theorem 6.1 now follows. □

In the final part of this section, we deal with the case of p 6= 2. Recall that E is an elliptic curve
over K with complex multiplication by OK and E has potentially good ordinary reduction at p. Write
pOK = p · p∗. Recall also that φ is the Hecke character over K associated to E. Let ϵ be a Galois
character over K taking values in O×

K such that φ′ = φϵ is unramified at both p and p∗. Let F be the
cyclic extension over K cut out by ϵ, thus [F : K] divides wK := |O×

K |. Let E′ be the twist of E by the
field extension F/K. Then φ′ is the Hecke character associated to E′. Since φ′ is unramified at both p
and p∗, E′ has good reduction at p. The curves E and E′ are isomorphic over F , E′(F )ϵ ' E(K), and
X(E′/F )(p)ϵ 'X(E/K)(p). Here, for a Gal(F/K)-module M, we write Mϵ for the ϵ-part of M.

Proof of Theorem 6.1 when p is odd. Put ∆ = Gal(F/K). Since |∆| is prime to p, for any exact commu-
tative diagram, taking ∆-invariant of each term still gives an exact commutative diagram. In particular,
we have X(E/F )(p)∆ = X(E/K)(p) and SelE(F )

∆
p = SelE(K)p. Note also that since the Tamagawa

numbers are prime to p, the Mazur module associated to E(p) is equal to the corresponding Selmer
group.

The case when E has good ordinary reduction at all primes above p was proven in [47]. Our case
follows by a variant of the same proof. Since E has good ordinary reduction at all primes of F above
p, we can adopt the same descent arguments as [47] for E/F . Noting that the descent diagram in [47,
Page 332] for E over F is ∆-equivariant, after taking ∆-invariant part in every module in the diagram,
we can get a descent diagram with exact rows and columns. We can also apply the similar method to
the diagram [47, Page 335] to get the algebraic p-adic height pairing for E over K, which is equal to the
analytic p-adic height by [47, Section B]. Using the same proof as [47, Theorem 2′], we obtain

(6.5) f∗E(1) ∼ |X(E/K)(p)| ·Rp(E/K) ·
∏
v|p

∣∣H1(Fcyc/F,E(Fcyc ⊗K Kv))
∆
∣∣ .

As in the proof for p = 2, we write ∼ to mean the equality is up to p-adic units. The below lemma will
complete the proof of Theorem 6.1.

Lemma 6.5. Let v0 = p or p∗. Assume that if wK = 4 or 6 then E has bad reduction at both p and p∗

or good reduction at both p and p∗. Then∣∣H1(Gal(Fcyc/F ), E(Fcyc ⊗K Kv0))
∆
∣∣ ∼ (1− φ(v0))2(1− φ(v∗0))2.

Note that [46] handled the case where E has good reduction above p. We now assume that E has bad
reduction either at p or at p∗. The isomorphism between E and E′ over F gives rise to an isomorphism

H1 (Fcyc/F,E(Fcyc ⊗K Kv0))
∆ ∼−→ H1 (Fcyc/F,E

′(Fcyc ⊗K Kv0))
ϵ
.
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We will use a fact in [46, Proposition (7.2)] saying that for any elliptic curve A over a local field f with
good ordinary reduction and let Ã denote its reduction over the residue field κ of f , we have

|H1 (fcyc/f,A(fcyc)) = |Ã(κ)(p)|2.
Here fcyc is the unique cyclotomic Zp-extension contained in f(µp∞).

Let w|v0 be a place of F above v0 and κw/κv0 be the residue fields of Fw and Kv0 respectively, we
have

|E′(κw)| ∼
(
1− φ′(v0)

[κw:κv0
]
)(

1− φ′(v∗0)
[κw:κv0

]
)
.

If wK = 2, then F/K is a quadratic extension. If E had bad reduction at v0, then F/K is ramified at
v0 and let w be the unique place of F above v0, we have κw = κv0 and thus∣∣H1 (Fcyc/F,E

′(Fcyc ⊗K Kv0))
ϵ∣∣ = |H1 (Fcyc,w/Fw, E

′(Fcyc,w)) |
|H1 (Kcyc,v0

/Kv0 , E
′(Kcyc,v0

)) |
=
|Ẽ′(κw)|2

|Ẽ′(κv0)|2
= 1.

If E has good reduction at v0, then F/K is unramified at v0. If v0 is split over F , then F⊗KKv0
∼= K2

v0
and ϵv0 = 1. It is easy to see that∣∣H1 (Fcyc/F,E

′(Fcyc ⊗K Kv0))
ϵ∣∣ ∼ (1− φ(v0))2(1− φ(v∗0))2.

If v0 is inert in F , let w be the unique prime of F above v0. Note that φ′
v0 = φv0ϵv0 and ϵ(v0) = −1.

Then we have∣∣H1 (Fcyc/F,E
′(Fcyc ⊗K Kv0))

ϵ∣∣ = |H1 (Fcyc,w/Fw, E
′(Fcyc,w)) |

|H1 (Kcyc,v0
/Kv0 , E

′(Kcyc,v0
)) |

=
|Ẽ′(κw)|2

|Ẽ′(κv0)|2

∼
(
(1− (φϵ)(v0)

2)(1− φϵ(v∗0)2)
(1− (φϵ)(v0))(1− φϵ(v∗0))

)2

= (1− φ(v0))2(1− φ(v∗0))2.

If wK = 4 or 6, by our assumption, v0 must be ramified over F and ϵ is non-trivial on the inertia
subgroup. The proof is similar to the previous ramified case. We omit the details. □

7. Iwasawa main conjecture and p-adic Birch-Swinnerton-dyer conjecture for E

Let K be an imaginary quadratic field. Denote by p a prime which splits in K, i.e., pOK = pp∗.
We make the assumption that p is induced by the embedding ιp. In particular, Kp = Qp in Cp and
let ψp = ψp on Kp under this identification. Let E be an elliptic curve defined over K with complex
multiplication by OK . Let ΩE be a p-minimal period of E over K. We assume that E has potentially
good (resp. good) ordinary reduction at p for p odd (resp. p = 2). Write φ for the associated Hecke
character of E and fE for the conductor of φ. Denote by φp the p-component of φ.

For any two non-zero integral ideals a, b in K, we denote by K(a) the ray class field over K modulo
a and put K(ab∞) = ∪n≥1K(abn).

Theorem 7.1 (Two variable p-adic L-function). Let g be any prime-to-p non-zero integral ideal of K.
Assume that f(p)E |g. There exists a unique measure µg = µg,p on the group Gal(K(gp∞)/K) such that for
any character ρ of Gal(K(gp∞)/K) of type (1, 0), we have

ρ(µg) =
τ(ρp, ψp)

τ(φp, ψp)
· 1− ρ(p)p

−1

1− ρ(p)p−1
· L

(gp)(ρ, 1)

ΩE
.

Here, L(gp)(ρ, s) is the imprimitive L-series of ρ with Euler factors at the places dividing gp removed.

We remark that, for any continuous character ρ : Gal(K(gp∞)/K) → C×
p , by linear extension, we

obtain a continuous algebra homomorphism ρ : D[[Gal(K(gp∞)/K)]]→ Cp. Since we can view µg as an
element in D[[Gal(K(gp∞)/K)]], ρ(µg) is defined to be the image of µg under the homomorphism ρ. For
the definition of the type of ρ, one can refer to [17, Chap II §1].

Proof. The result follows from the lemma 7.3 below and the construction of Katz’s two variable p-adic
measure. One can refer to [17, Theorem4.14], [52] for details. □

Let F be a finite abelian extension over K with Galois group ∆ = Gal(F/K). Assume that |∆| is
prime to p. Set G = Gal(F (E(p))/K). Then G = Gtor × ΓK with ΓK = Gal(F (E(p))/F (Eq)), where the
integer q = p or 4 according as p is odd or even. Let ΛG = Zp[[G]] be the Iwasawa algebra of G. Let U∞
(resp. C∞) denote the ΛG-module of the principal local units at the primes above p (resp. the closure
of the elliptic units for F (E(p))/K under the p-adic topology). One can refer to [45, §4] for a precise
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definition for these modules. Since p ∤ |∆| and the group Gal(F (E4)/F ) has exponent 2, every character
χ of Gtor takes values in D. It is well-known (see [52], [45], [35]) that (U∞/C∞)χ is a finitely generated
torsion D[[ΓK ]]-module. We define charΓK

(U∞/C∞)χ to be the characteristic ideal of (U∞/C∞)χ.

Theorem 7.2 (Yager). Assume that F = K if p = 2. For any character χ of Gtor, let f = f
(p)
χ . Assume

that f(p)E divides f. Define
µχ
f := χ(µf) ∈ D[[ΓK ]],

then
charΓK

(U∞/C∞)χ · D[[ΓK ]] =
(
µχ
f

)
.

Here the measure µf is defined as in Theorem 7.1.

Proof. For p is an odd prime, this is a theorem of Yager [52]. The case for p = 2 can be proven in a
similar way using a two variable generalisation of de Shalit’s observation (in [17, Chap I]) that the one
variable structure theorem for principal local units can vary very well under unramified extensions. A
detailed proof can be found in [35]. □

Lemma 7.3. Let E/K be an elliptic curve associated with a Hecke character φ, assume that p 6= 2 splits
in K and write pOK = pp∗. Let φ0 be a Hecke character over K unramified at p. Let ΩE and Ω0 be
p-minimal periods of E and φ0, respectively. Then

ordp

(
ΩE · τ(φp, ψp)

Ω0

)
= 0.

Proof. The method for the proof is via Stickelberger’s theorem on prime ideal decomposition of Gauss
sum. In fact, for p ∤ w = wK , E has p-minimal Weierstrass equation of form

E : y2 = x3 + a2x
2 + a4x+ a6, a2, a4, a6 ∈ K× ∩ Op.

Note that for w = 4, 6, we can take form y2 = x3 + a4x, y2 = x3 + a6, respectively. Then there is an
elliptic curve E′′ over K which has good reduction at p. Let φ′′ be its associated Hecke character. Then
ϵ = φφ′′−1

: A×
K/K

× → O×
K (also viewed as a Galois character via class field theory) is of the form

χ(σ) = σ(d1/w)/d1/w for an element d ∈ K×/K×w. Then the twist E′′ has p-good model

E′′ :


y2 = x3 + da2x

2 + d2a4x+ d3a6, if w = 2,

y2 = x3 + da4x, if w = 4,

y2 = x3 + da6, if w = 6.

It is easy to check that ΩE′′ = d1/w · ΩE . Let ω : O×
p −→ µw ⊂ K be the character characterized by

ω(a) ≡ a mod p and let χ = ω−(p−1)/w. Then ϵp = χk for some k ∈ Z/wZ. Let κp ∼= Fp be the residue
field of Kp. By Stickelberger’s theorem, the Gauss sum g(ϵp, ψ) := −

∑
a∈κ×

p
ϵp(a)ψ(a) has p-valuation

{k/w}. Notice that τ(φp, ψp) and g(ϵp, ψ) are up to p-adic units. It remains to show that k = ordp(d).
Note that for any u ∈ O×

p , Kp(u
1/w) is unramified over Kp. Thus it is equivalent to show that for any

uniformizer π of Kp,
σu(π

1/w)/π1/w ≡ u−(p−1)/w mod p, ∀u ∈ O×
p .

But it is easy to see this by using local class field theory for formal group associated to xp − πx.
For general Hecke character φ0 over K unramified at p (not necessarily K-valued) and Ω0 its p-minimal

period, it is easy to see that ordp(Ω0/ΩE′′) = 0.
□

Let χcyc,K : G → Z×
p be the p-adic cyclotomic character defined by the following composition

G → Gal(Kcyc/K)→ Z×
p .

Here the first map is the natural quotient map and the second map is given by the restriction of the
cyclotomic character of Gal(K(µ(p))/K) to Gal(Kcyc/K). We define

LφE
(s) := φEχ

1−s
cyc,K(µ

f
(p)
E

) (s ∈ Zp).

Recall that we have defined the Selmer group SelE(Kcyc)p, Γ = Gal(Kcyc/K) and the Iwasawa algebra
Λ = ΛΓ.

Proposition 7.4. The Selmer group SelE(Kcyc)p is a finitely generated cotorsion Λ-module.
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Proof. For p odd this is a main result in [44]. For p = 2, since Rubin’s main conjecture at p = 2 was
proven in [32], by a similar argument in the below proposition which links the Selmer group over Kcyc to
the Selmer group over K(E(p)), the proposition follows by the same argument as in [44] using Rohrlich’s
theorem on generic non-vanishing of the cyclotomic twists of L-values of E. □

Let cE,K denote a generator of the characteristic ideal of (SelE(Kcyc)p)
∧. As in the previous sections,

we define fE(s) = χ1−s
cyc (cE,K) for s ∈ Zp.

Proposition 7.5. There exists a function u(s) on Zp taking values in D× such that
fE(s) = u(s)Lφ(s)Lφ(s) s ∈ Zp.

Proof. This is the p-adic cyclotomic main conjecture for E over K. The idea is via the two variable
Iwasawa main conjecture for E ([45], [32]) and Yager’s theorem ([52], [17], [35]).

If p 6= 2, recall that ϵ is a Galois character over K taking values in O×
K such that φ′ = φϵ is unramified

at both p and p∗. Then we have defined F to be the cyclic extension cut out by ϵ over K with degree
[F : K] prime to p. The curve E/F has good reduction at primes above p, and the p-power Selmer group
of E/K is equal to the ∆ = Gal(E/K)-invariant of the p-power Selmer group of E/F . If p = 2, we write
F = K. Write F0 = F (Eq), here q = p or 4 according as p is odd or p = 2. Let χ : Gal(F0/K)→ O×

p be
the character giving the action of Gal(F0/K) on Eq.

Let F∞ = F (E(p)). Then Gal(F∞/F0) is isomorphic to Z2
p. Let M∞,p be the maximal abelian p-

extension over F∞ which is unramified outside the primes above p. Set X∞,p = Gal(M∞,p/F∞). A
well-known theorem due to Coates and Perrin-Riou shows that (X∞,p)χ is a finitely generated torsion
Zp[[Gal(F∞/F0)]]-module. We write Char(X∞,p)χ for the characteristic ideal of (X∞,p)χ. Rubin’s two
variable main conjecture (see [45] for p odd and [32] combined with the vanishing of µ-invariant [38],
[16], [8] for p = 2), and Yager’s theorem (see [52] [35]) imply that

(7.1) Char(X∞,p)χD[[Gal(F∞/F0)]] =

(
µχ

f
(p)
E ,p

)
,

where for an integral ideal g of K prime to p, the measure µg is given as in Theorem 7.1. Here, we write
µg,p = µg to emphasize that we embed K under ιp via the prime p.

Recall that SelE(F∞)p is the p-power Selmer group of E over F∞. Let K∞ be the unique Z2
p-extension

over K, and we identify Gal(F0/K) with Gal(F∞/K∞). Set Υ = Gal(F∞/K∞). Note that

(7.2) SelE(F∞)Υp = Hom((X∞,p)χ, E(p))

and (X∞,p)χ is a finitely generated torsion Zp[[Gal(F∞/F0)]]-module, we know (SelE(F∞)p)
∧
Υ is a finitely

generated torsion Zp[[Gal(F∞/F0)]]-module. Write Char((SelE(F∞)p)
∧
Υ) for its characteristic ideal in

Zp[[Gal(F∞/F0)]]. Observe that
(7.3) Char((SelE(F∞)p)

∧
Υ) = ιpChar((X∞,p)χ),

where ιp : Zp[[Gal(F∞/F0)]] → Zp[[Gal(F∞/F0)]], γ 7→ ϱp(γ)γ for any γ ∈ Gal(F∞/F0) and ϱp is the
character of Gal(F∞/F0) giving the action on E(p). The equations (7.1) and (7.3) show that
(7.4) Char((SelE(F∞)p)

∧
Υ)D[[Gal(F∞/F0)]] = (ιpµ

χ

f
(p)
E ,p

).

Similarly, by changing the role of p and p∗, we obtain
(7.5) Char((SelE(F∞)p∗)∧Υ)D[[Gal(F∞/F0)]] = (ιp∗µχ

f
(p)
E ,p∗

).

Put Γ− = Gal(K∞/Kcyc). Recall the decomposition
SelE(Kcyc)p = SelE(Kcyc)p ⊕ SelE(Kcyc)p∗ .

The same proof as Lemmas 4.2, 4.3 shows that SelE(Kcyc)p is quasi-isomorphic to

Hom((X∞,p)χ, E(p))Γ− ⊕Hom((X∞,p∗)χ, E(p∗))Γ− .

Noting Proposition 7.4, from equations (7.2), (7.4) and (7.5), we obtain

cE,K · ΛD =

(
ιpµ

χ

f
(p)
E ,p

ιp∗µχ

f
(p)
E ,p∗

)
.

Here, cE,K denotes the characteristic ideal of (SelE(Kcyc)p)
∧ and ΛD = Λ⊗̂D. Now applying χ1−s

cyc,K to
both sides of the above equality, we know the proposition follows. □
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Now we come back to consider the p-adic Birch and Swinnerton-Dyer conjecture of E. If p = 2, we
keep the assumption that E is a quadratic twist of X0(49) by the extension Q(

√
D) over Q for some

square-free integer D ≡ 1 mod 4.

Theorem 7.6. Assume that E(K)⊗OK
K has dimension one over K and X(E/K)(p) is finite. Then

SelE(Kcyc)p is a cotorsion ΛΓ-module and the vanishing order of Lφ(s) (resp. Lφ(s)) at s = 1 is equal
to 1. Denote by L ∗

φ (1) (resp. L ∗
φ (1)) the coefficient of the leading term of Lφ(s) (resp. Lφ(s)) at

s = 1, we have
(7.6) ordp

(
L ∗

φ (1) ·L ∗
φ (1)

)
= ordp

(
Cp · |X(E/K)(p)| ·Rp(E/K) · (1− φ(p))4(1− φ(p∗))4

)
.

Here Cp is equal to 4|B| or 1 according as p = 2 or p is odd. Recall that B denotes the set of bad primes
for E over K. Moreover, if E is defined over Q, then we have

(7.7) ordp
(
L ∗

φ (1)
)
= ordp

(∏
ℓ

mℓ(E/Q) · |X(E/Q)(p)| ·Rp(E/Q) · (1− φ(p))2(1− φ(p∗))2
)
.

Here mℓ(E/Q) denotes the Tamagawa number of E at a prime ℓ, and the first product in (7.7) runs over
all bad primes of E over Q.

Proof. Since the complex conjugation changes Lφ(s) to Lφ(s), we know both p-adic L-functions have
the same vanishing order at s = 1. All assertions in the theorem except (7.7) follow from Theorem 6.1
and Proposition 7.5. In the following we show how to derive (7.7) from (7.6).

Let us first consider the case when p is odd. In this case, the equation (7.6) becomes
2ordp

(
L ∗

φ (1)
)
= ordp

(
|X(E/K)(p)| ·Rp(E/K) · (1− φ(p))4(1− φ(p∗))4

)
.

Write NE for the conductor of E. Since E is defined over Q, the conductor formula of E/Q shows that
the discriminant of K must divide NE . Noting that p splits in K, from Coates-Wiles theorem (see [15]),
we know E(K)p = 0. Similar proof as Lemma 6.4 implies that an OK generator of E(K) can be taken
from E(Q) without changing the p-adic valuation of Rp(E/K). A direct computation using a Z-basis of
OK shows that

ordp(Rp(E/K)) = 2 · ordp(Rp(E/Q)).

Write EK for the twist of E by K/Q. Since Gal(K/Q) has order prime to p, its action on X(E/K)(p)
is semi-simple. We denote by X(E/K)(p)+, resp. X(E/K)(p)− the eigenspace with eigenvalue 1, resp.
−1 under this action. Then

X(E/K)(p) = X(E/K)(p)+ ⊕X(E/K)(p)−.

Similar proof as Lemma 4.4 shows that X(EK/Q)(p) 'X(E/K)(p)−. We also have X(E/K)(p)+ '
X(E/Q)(p). Since E has complex multiplication by OK and p is unramified in K, by [37, Proposition
6(a)] we have that there exists an isogeny between E and EK whose degree is prime to p. There-
fore we know the isogeny induces an isomorphism between X(E/Q)(p) and X(EK/Q)(p). We obtain
|X(E/K)(p)| = |X(E/Q)(p)|2. It is clear that (7.7) follows.

Next we consider the case p = 2, the equation (7.7) turns to be

2ordp
(
L ∗

φ (1)
)
= ordp

(
4|B| · |X(E/K)(p)| ·Rp(E/K) · (1− φ(p))4(1− φ(p∗))4

)
.

Since E has good reduction at 2, the bad primes must be odd. For a bad prime ℓ, viewing E defined over
a local field L over Qℓ, from [30, Proposition 4.9], we know tℓ(E/L) = |E(L)2|. Here tℓ(E/L) denotes the
Tamagawa number of E/L at ℓ. Since E is defined over Q, considering the behavior of the bad primes
under the extension K/Q, using the fact that E(K)2 = (Z/2Z)2 and E(Q)2 = Z/2Z, we obtain∏

ℓ

mℓ(E/Q) = 2|B|.

Applying Lemma 6.4 and noting that |E(K)(2)| = |E(Q)(2)|2, we have
ordp(Rp(E/K)) = 2 · ordp(Rp(E/Q)).

We conclude the proof by showing that |X(E/K)(2)| = |X(E/Q)(2)|2. Note that
ordp

(
R∞(E/K)/R∞(E/Q)2

)
= 0.

By the equivalence of the Birch-Swinnerton-Dyer conjecture for E/Q and E/K (see [37, Corollary after
Theorem 3]), observing all terms except |X(E/K)| involving in the Birch-Swinnerton-Dyer formula over
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K are square of the corresponding terms over Q, we see immediately that |X(E/K)(2)| = |X(E/Q)(2)|2.
For another proof of this last fact, one can refer to [23, equation (13) on Page 4197]. □

8. Complex and p-adic Gross-Zagier Formulae

Let E be an elliptic curve over Q of conductor N , write ϕ for the newform associated to E. Let p
be a prime where E has potentially ordinary reduction, i.e., E has either potentially good ordinary or
potentially semistable reduction at p. Let α : Q×

p → Z×
p be the character contained in the representation

(VpE)ss of GQp
such that α|Z×

p
is of finite order.

Let K be an imaginary quadratic field such that ϵ(E/K) = −1 and p splits in K. Let ΓK be the Galois
group of the Z2

p-extension over K. Recall that, in [18], there exists a p-adic measure µE/K on ΓK such
that for any finite order character χ of ΓK, we have

χ(µE/K) =
L(p)(1, ϕ, χ)

8π2(ϕ, ϕ)
·
∏
w|p

Zw(χw, ψw),

where (ϕ, ϕ) is the Petersson norm of ϕ:

(ϕ, ϕ) =

∫∫
Γ0(N)\H

|ϕ(z)|2dxdy, z = x+ iy,

and for each prime w|p of K, let αw = α ◦NKw/Qp
and ψw = ψp ◦TrKw/Qp

, and let ϖw be a uniformizer
of Kw, then

Zw(χw, ψw) =

{
(1− αwχw(ϖw)

−1)(1− αwχw(ϖw)p
−1)−1, if αwχw is unramified;

pnτ((αwχw)
−1, ψw), if αwχw is of conductor ϖn (n ≥ 1).

From now on, we assume that E has complex multiplication by an imaginary quadratic field K. Since
E has potentially good ordinary reduction, the prime p splits in K, say pOK = pp∗. Let φ be the Hecke
character over K associated to E. The following lemma will be used to prove our main theorem.

Lemma 8.1. Assume that p is induced by ιp, i.e., we can identify Kp with Qp. The non-trivial element
τ ∈ Gal(K/Q) induces an isomorphism on AK so that τ : Kp∗

∼→ Kp = Qp. Then α = φp∗ ◦ τ−1 and
(α−1χcyc)(x) = φp(x)x

−1 for any x ∈ Q×
p . Moreover, for any place w|p of K, any finite order character

ν : Q̂×/Q×Ẑ×(p)Z×
p,tor → µp∞ viewed as a character on ΓK by composing with the norm map, we have

Zw(νw, ψw) = τ(φpν
−1
p , ψw) ·

1− (φpν
−1
p )(p)p−1

1− (φpν
−1
p )(p)p−1

.

Proof. The assertions follow from the equalities φφ = | |−1

A(∞)
K

and φτ = φ. □

Let χcyc,K : ΓK → Z×
p denote the p-adic cyclotomic character of ΓK. Let χ be a finite order anticy-

clotomic character. Define LE/K,χ to be the p-adic L-function
LE/K,χ(s) = χχ1−s

cyc,K(µE/K), s ∈ Zp.

For the trivial character χ, we simply write LE/K for LE/K,χ. Similar to Rp(E/K) and R∞(E/K) we
define Rp(E/K, χ), R∞(E/K, χ) to be the complex χ-regulator, the p-adic χ-regulator, respectively.

Theorem 8.2 (See [53] and [18]). Let E be an elliptic curve over Q with complex multiplication, let p
be a prime where E has potentially good ordinary reduction. Let K be an imaginary quadratic field such
that p splits in K and ϵ(E/K) = −1. Then

(8.1)
L ′

E/K,χ(1)

Rp(E/K, χ)
· Lp(E/K, χ, 1)∏

w|p Zw(χw, ψw)
=

L′(E/K, χ, 1)
R∞(E/K, χ) · 8π2(ϕ, ϕ)

.

Here Lp(E/K, χ, s) denotes the Euler factor of L(E/K, χ, s) at p. In particular, L ′
E/K(1) = 0 if and

only if L′(E/K, 1) = 0.

Proof. Write ηK/Q for the quadratic character associated to K/Q. For each place v of Q, we denote by
ηv the v-component of ηK/Q. Let B be an indefinite quaternion algebra over Q ramified exactly at the
places v where ϵv(E/K, χ)ηv(−1) = −1. It is well-known that there exists a Shimura curve X over Q
(with suitable level) and a non-constant morphism f : X → E over Q mapping a divisor in the Hodge
class to the identity of E such that the corresponding Heegner point Pχ(f) is non-torsion if and only if
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L′(E/K, χ, 1) 6= 0 by [53, Theorem 1.2]. Note that the p-adic height is non-vanishing when E has complex
multiplication (see [2]). From [18, Theorem B], Pχ(f) is non-torsion if and only if L ′

E/K,χ(1) 6= 0. Thus
L′(E/K, χ, 1) = 0 if and only if L ′

E/K,χ(1) = 0.
Now we assume that L′(E/K, χ, 1) 6= 0. Write Kχ for the field cut out by χ. Put Oχ to be the

ring generated by values of χ over Z. By the Euler system method due to Kolyvagin, we know that
(E(Kχ)⊗Oχ)

χ is of Oχ-rank one and

ĥ∞(Pχ(f))

R∞(E/K, χ)
=

ĥp(Pχ(f))

Rp(E/K, χ)
∈ Q×

.

Here ĥ∞ (resp. ĥp) denotes the Néron -Tate (resp. p-adic) height on E/K.
By [53, Theorem 1.2], we obtain

L′(E/K, χ, 1)
R∞(E/K, χ) · 8π2(ϕ, ϕ)

=
h∞(Pχ(f))

R∞(E/K, χ)
· 4L(1, η)

πcK
· L(1, π, ad)
8π3(ϕ, ϕ)

· α−1(f, χ).

From [18, Theorem B] and [19, Appendix B] (with our definition of LE/K,χ), we obtain

L ′
E/K,χ(1)

Rp(E/K, χ)
=

hp(Pχ(f))

Rp(E/K, χ)
· 4L(1, η)

πcK
·
∏

w|p Zw(χw, ψw)

Lp(E/K, χ, 1)
· L(1, π, ad)
8π3(ϕ, ϕ)

· α−1(f, χ),

where the α(f, χ) ∈ Q×. One can refer to [18, equation (1.1.4)] for the definition of cK. The theorem
follows.

□

Now we give an explicit form of p-adic Gross-Zagier formula as an application. Let c be the conductor
of χ and D the discriminant of K. Recall that ϕ =

∑
n anq

n is the newform associated to E. Assume
the following Heegner hypothesis holds:

(1) (c,N) = 1, and no prime divisor q of N is inert in K, and also q must be split in K if q2|N .
(2) χ([q]) 6= aq for any prime q|(N,D), where q is the unique prime ideal of OK above q and [q] is

its class in Pic(Oc).
Let X0(N) be the modular curve over Q, whose C-points parametrize isogenies E1 → E2 between elliptic
curves over C whose kernel is cyclic of order N . Let Oc = Z + cOK be an order in K. From the above
Heegner hypothesis, there exists a proper ideal N of Oc such that Oc/N ∼= Z/NZ. For any proper
ideal a of Oc, let Pa ∈ X0(N) be the point representing the isogeny C/a → C/aN−1, which is defined
over the ring class field Hc over K of conductor c, and only depends on the class of a in Pic(Oc). Let
f : X0(N)→ E be a modular parametrization mapping the cusp at infinity to the identity in E. Denote
by deg f the degree of the morphism f . Define the Heegner point to be

Pχ(f) :=
∑

[a]∈Pic(Oc)

f(Pa)⊗ χ([a]) ∈ E(Hc)Q.

Theorem 8.3. Let E,χ be as above satisfying the Heegner conditions (1) and (2). Then

L′(E/K, χ, 1) = 2−µ(N,D) · 8π
2(ϕ, ϕ)

u2
√
|Dc2|

· ĥ∞(Pχ(f))

deg f
,

where µ(N,D) is the number of prime factors of the greatest common divisor of N and D, u = [O×
c : Z×]

is half of the number of roots of unity in Oc, and ĥ∞ is the Néron -Tate height on E over K.
Moreover, let p be a prime split in K and assume that E has potentially ordinary reduction at p, then

we have

L ′
E/K,χ(1) =

∏
w|p Zw(χw, ψw)

Lp(E/K, χ, 1)
· 2

−µ(N,D)

u2
√
|Dc2|

· ĥp(Pχ(f))

deg f
,

where ĥp is the p-adic height on E over K.

Proof. The explicit form of the complex Gross-Zagier formula is proved in [7]. The explicit form of the
p-adic Gross-Zagier formula then follows from the equation (8.1) in Theorem 8.2. □

19



9. Proof of the main theorem

In this section, let E be an elliptic curve over Q with complex multiplication by K, let Ω(E/Q) be
the minimal real period of E over Q. Denote by p a prime which splits in K. As always we assume that
E has potentially good ordinary reduction at p, and good ordinary reduction at p when p = 2. Recall
that we have defined ΩE to be the p-minimal period for E over K in §7.

Lemma 9.1. Let K be an imaginary quadratic field where p splits, ηK/Q the associated quadratic char-
acter, and ηK the base extension of ηK/Q to K. Assume that ϵ(E/K) = −1. Then there exists a p-adic
unit u such that

LE/K = u · τ(φp, ψp)
2 · Ω2

E

8π2(ϕ, ϕ)
·LφLφηK

.

Proof. Let f0 = f
(p)
E . It’s enough to show that for any finite order character

ν : Q̂/Q×Ẑ×(p)Z×
p,tor → C×,

we have

(9.1) νK(µE/K) = τ(φp, ψp)
2 · Ω2

E

8π2(ϕ, ϕ)
· µf0(φν

−1
K )µf0(φηKν

−1
K ).

Here νK = ν ◦NK/Q and νK = ν ◦NK/Q. By interpolation property, νK(µE/K) is equal to

L(p)(1, ϕ, ν−1
K )

8π2(ϕ, ϕ)

∏
w|p

Zw(νw, ψw).

Note that p splits in K, ηK is trivial at primes above p. From Theorem 7.1, µf0(φν
−1
K )µf0(φηKν

−1
K ) is

equal to
τ(φpν

−1
p , ψp)

2

τ(φp, ψp)2
·

(
1− φν−1(p)p−1

1− φν−1(p)p−1

)2

·
L(pf0)(φν−1

K , 1)

ΩE
·
L(pf0)(φν−1

K ηK , 1)

ΩE
.

Then the equality (9.1) follows from the identity

L(p)(1, ϕ, ν−1
K ) = L(pf0)(φν−1

K , 1) · L(pf0)(φν−1
K ηK , 1)

and Lemma 8.1. □

We are ready to prove Theorem 1.1. Assume that L(E, s) has a simple zero at s = 1. Let p be a
prime satisfying either E has bad but potentially good ordinary reduction at p 6= 2 (odd case) or E has
good ordinary reduction at p = 2 (even case). Let φ be the Hecke character over K associated to E and
recall that f0 = f

(p)
E . We choose an imaginary quadratic field K such that

• L(E/K, s) has a simple zero at s = 1.
• p splits in K.
• The discriminant D of K is prime to f0.

Let EK denote the twist of E by the field extension K over Q.

Proof of Theorem 1.1 for the odd case. Note that related Euler factors are trivial in this case, we then
have

• LφηK
(1) =

L(EK, 1)

ΩE
,

•
L ′

E/K(1)

Rp(E/Q) · τ(φp, ψp)2
=

L′(E/K, 1)
R∞(E/Q) · 8π2(ϕ, ϕ)

.

• ordp(|X(E/Q)|) = ordp

(
L ′

φ(1)

Rp(E/Q)

)
,

• ordp

(
L ′

E/K(1)

L ′
φ(1)LφηK

(1)

)
= ordp

(
τ(φp, ψp)

2 · Ω2
E

8π2 · (ϕ, ϕ)

)
,

• ordp

(
Ω(E/Q)

ΩE

)
= 0.
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It follows that
ordp(|X(E/Q|)) = ordp

(
L′(E/Q, 1)

Ω(E/Q) ·R∞(E/Q)

)
.

This proves Theorem 1.1 when p is odd.
□

Proof of Theorem 1.1 for the even case. Note that all related root numbers (or Gauss sums) are trivial
in this case. We then have

• LφηK
(1) =

(
1− φ(p)

p

)2

· L(E
K, 1)

ΩE
,

•
L ′

E/K(1)

Rp(E/Q)
·
(
1− φ(p)

p

)−4

=
L′(E/K, 1)

R∞(E/Q) · 8π2(ϕ, ϕ)
.

• ordp

((
1− φ(p)

p

)−2

·
L ′

φ(1)

Rp(E/Q)

)
= ordp

(∏
ℓ

mℓ(E/Q) · |X(E/Q)|

)
,

• ordp

(
L ′

E/K(1)

L ′
φ(1)LφηK

(1)

)
= ordp

(
Ω2

E

8π2 · (ϕ, ϕ)

)
,

• ordp

(
Ω(E/Q)

ΩE

)
= 0.

Therefore we obtain

ordp

(∏
ℓ

mℓ(E/Q) · |X(E/Q|)

)
= ordp

(
L′(E/Q, 1)

Ω(E/Q) ·R∞(E/Q)

)
.

The even case of Theorem 1.1 follows.
□

10. Appendix (I): Non-existence of certain non-zero finite submodules

Let K be an imaginary quadratic field and F a finite abelian extension over K. Let E be an elliptic
curve over F with complex multiplication by OK . Let p be a prime such that p splits in K, i.e.,
pOK = p · p∗. We assume E has good ordinary reduction at all primes of F above p.

Let P be the set of primes in F above p and B the set of primes in F where E has bad reduction.
Put W = P ∪ B. We make the convention that for an algebraic extension over F and a set S of primes
in F , we use the same notation to denote the set of primes lying above the ones in S. Let Fcyc be the
cyclotomic Zp-extension over F , let Γ = Gal(Fcyc/F ) and denote by Λ = ΛΓ the Iwasawa algebra of Γ.
For any set S of primes in F , we define SelSE(Fcyc)p to be the relaxed at S p-power Selmer group of E
over Fcyc. The Selmer group SelSE(Fcyc)p is a Λ-module.

The aim of the appendix is to prove the following theorem.

Theorem 10.1. Assume that SelE(Fcyc)p is a cotorsion Λ-module. If each prime of F above p is totally
ramified in Fcyc, then the Pontryagin dual of SelWE (Fcyc)p has no non-zero finite Λ-submodules.

We remark that Theorem 10.1 implies the non-existence of non-zero Λ-modules used in the proof
for Proposition 6.2. Either by the assumption E(F ) has OK-rank one, X(E/F )(p) is finite in the
proposition and Schneider’s proof, or applying a similar proof of Rubin [44] using Iwasawa main conjecture
and Rohrlich’s theorem, we know SelE(Fcyc)p is a cotorsion Λ-module. It is also easy to see each
prime above p is totally ramified in Fcyc/F . Since the curve E in Proposition 6.2 has good reduction
everywhere over F , Theorem 10.1 shows that (SelPE(Fcyc)p)

∧ has no non-zero finite Λ-submodules. An
easy argument using Tate local duality implies that H1(Fcyc,w, E)(p) = 0 for every prime w of Fcyc

above p. Therefore, SelE(Fcyc)p = SelPE(Fcyc)p and (SelE(Fcyc)p)
∧ has no non-zero finite Λ-submodules.

Notice the decomposition
SelE(Fcyc)p = SelE(Fcyc)p ⊕ SelE(Fcyc)p∗ .

Since E in Proposition 6.2 is defined over Q, E is invariant under complex conjugation. The same proof as
Theorem 10.1 applying to the prime p∗ implies that (SelE(Fcyc)p)

∧ has no non-zero finite Λ-submodules.
The rest of this section is devoted to giving a proof of Theorem 10.1. The idea of showing that the dual

of SelWE (Fcyc)p has no non-trivial finite Λ-submodules is due to Greenberg. In fact, we know from [27,
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Proposition 2.4] that the Λ-module (SelWE (Fcyc)p)
∧ having no non-zero finite Λ-submodules is equivalent

to the discrete Λ-module SelWE (Fcyc)p being almost (Λ-)divisible, that is, for all but finitely many height
one elements λ ∈ Λ, i.e., λΛ is a height one prime ideal in Λ, we have

λ SelWE (Fcyc)p = SelWE (Fcyc)p.

To show the almost divisibility of SelWE (Fcyc)p, we show that the sequence

(10.1) 0→ SelWE (Fcyc)p → H1(Fcyc, E(p))→
∏
v∤W

H1(Fcyc,v, E)(p)→ 0

is exact (the difficult part is showing the surjectivity of the localization map). Since this is an exact
sequence of Λ-modules, we can consider the multiplication-by-λ map on each term for any element λ ∈ Λ.
Then the snake lemma gives us the exact sequence

(10.2) H1(Fcyc, E(p))[λ]
αλ−→

∏
v∤W

H1(Fcyc,v, E)(p)

 [λ]→ SelWE (Fcyc)p

λ SelWE (Fcyc)p
→ H1(Fcyc, E(p))

λ H1(Fcyc, E(p))
,

where for a Λ-module M, we denote M[λ] by the submodule consisting of elements which are annihilated
by λ. Thus, the almost divisibility of SelWE (Fcyc)p follows from the almost divisibility of H1(Fcyc, E(p))
and the surjectivity of the map αλ for all but finitely many λ. We will give this argument in the language
of Selmer group for p-adic Galois representations [24]. For this purpose, let us introduce more notation.
Denote by Σ the set of primes of F which either lie above p or are bad for E. We denote by FΣ the
maximal algebraic extension over F which is unramified outside the set of primes of F lying above those
in Σ.

Lemma 10.2. We have

(10.3) SelWE (Fcyc)p = Ker

H1(FΣ/Fcyc, E(p))→
∏
v|p∗

H1(Fcyc,v, E(p))

 .

Proof. This is a well-known fact. A similar proof as [11, Lemma 2.3] gives the result. □

Now, we introduce the Greenberg Selmer group. Identifying Op = OKp
with Zp, we have Λ = Op[[Γ]].

Recall that Λ× is the group of units in Λ. Denote by TpE the p-adic Tate module of E, and we let

ρ0 : Gal(FΣ/F )→ AutOp
(TpE)

be the Op-linear representation of Gal(FΣ/F ) on TpE. Let κ : Γ → Λ× be the natural inclusion. We
write Λ(κ) for the Iwasawa algebra Λ with the Galois action of Gal(FΣ/F ) given by the composition of
the map κ with the quotient map Gal(FΣ/F ) ↠ Gal(Fcyc/F ) = Γ. Then we have a representation

ρ : Gal(FΣ/F )→ Λ×

with the representation space T = TpE ⊗Op
Λ(κ), where the Galois group Gal(FΣ/F ) acts on T via

ρ0 ⊗ κ.
Recall that Λ∧ = HomOp

(Λ,Kp/Op) is the Pontryagin dual of Λ. We define E = T ⊗Λ Λ∧. Then the
Greenberg Selmer group of E over F is defined to be

SE(F ) :=
⋂
v∈Σ

ker

(
H1 (FΣ/F, E)→

H1(Fv, E)
Lv(E)

)
.

Here, the set of local conditions L = (Lv(E))v∈Σ is given by

(10.4) Lv(E) =

{
H1(Fv, E) if v ∤ p∗,
0 if v | p∗.

Lemma 10.3. As Λ-modules, we have SE(F ) ' (SelE(Fcyc)p)
ι, where for a Λ-module M, Mι means the

abelian group M with the Γ action given by the map γ 7→ γ−1 for γ ∈ Γ.

Proof. The lemma is an application of Shapiro Lemma. A detailed proof can be found in [25, Proposition
3.2]. □
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For any place v of F lying above p, our assumption implies that Fcyc/F is totally ramified at v. Thus,
writing w for the unique place of Fcyc above v, the proof of the Lemma 10.3 (or [25, Proposition 3.2])
gives the isomorphism
(10.5) H1(Fv, E) ' H1(Fcyc,w, E(p))ι.

Now we show that H1(FΣ/F, E) is an almost divisible Λ-module. For this purpose, we compute the
Λ-corank of each term in the following exact sequence

(10.6) 0→ SE(F )→ H1(FΣ/F, E)
ϕL−→ QL(F, E),

where QL(F, E) =
∏

v∈Σ
H1(Fv,E)
Lv(E) , and ϕL = (ϕLv )v is the natural localization map for H1(FΣ/F, E) at

each v ∈ Σ. Recall we have assumed that SE(F ) is a cofinitely generated Λ-torsion module.

Lemma 10.4. The modules H1(FΣ/F, E) and QL(F, E) are cofinitely generated Λ-modules and

corankΛ(H
1(FΣ/F, E)) = corankΛ(QL(F, E)) = r2(F ) = [F : K].

Here r2(F ) denotes the number of the complex places of F . In particular, we have H2(FΣ/F, E) = 0.

Proof. The cofinitely generated property of these modules are well-known (see [27, Proposition 3.2]). For
the assertion on the corankΛ(QL(F, E)), we refer the reader to [29, §2.3], or [27, section 4]. The method
also works for p = 2 since F has no real places. Note the exact sequence

0→ SE(F )→ H1(FΣ/F, E)→ QL(F, E)

and that SE(F )
∧ is Λ-torsion, we have corankΛ(H

1(FΣ/F, E)) ≤ r2(F ). On the other hand, by the global
Euler characteristic, we obtain

corankΛ(H
1(FΣ/F, E)) = corankΛ(H

0(FΣ/F, E)) + corankΛ(H
2(FΣ/F, E)) + r2(F ).

Thus corankΛ(H
1(FΣ/F, E)) ≥ r2(F ) and we obtain corankΛ(H

1(FΣ/F, E)) = r2(F ). So H2(FΣ/F, E)
is a cotorsion Λ-module. The second assertion follows from the fact that H2(FΣ/F, E) is a divisible
Λ-module (see [28, Proposition 2.1.1, Lemma 5.2.2]). □

Proposition 10.5. The module H1(FΣ/F, E) is an almost divisible Λ-module.

Proof. By [27, Theorem 3], Hi(FΣ/F, E) is isomorphic toHi (FΣ/Fcyc, E(p))
ι for i = 1, 2. The Hochschild-

Serre spectral sequence implies the exact sequence
0→ H1(Γ,H1(FΣ/Fcyc, E(p)))→ H2(FΣ/F,E(p))→ H2(FΣ/Fcyc, E(p))Γ → 0.

Since Lemma 10.4 shows that H2(FΣ/Fcyc, E(p)) = 0, we obtain

H1(Γ,H1(FΣ/Fcyc, E(p))) ' H2(FΣ/F,E(p)).

From the proof of Lemma 10.4, we know that H2(FΣ/F, E) is a divisible Λ-module. Therefore the module
(H1(FΣ/Fcyc, E(p))∧)Γ has no non-zero finite submodules. Now, by the equivalence of the notions of
a module being almost Λ-divisible and its dual having no non-zero finite Λ-submodules, it remains to
show that H1(FΣ/Fcyc, E(p))∧ has no non-zero finite Λ-submodules. Indeed, suppose otherwise and let
F ′ 6= 0 be a maximal finite Λ-submodule of H1(FΣ/Fcyc, E(p))∧. Let γ0 be a topological generator of
Γ. Given any integer m ≥ 1, we may consider γm0 − 1 acting on the exact sequence

0→ F ′ → H1(FΣ/Fcyc, E(p))∧ → H1(FΣ/Fcyc, E(p))∧/F ′ → 0.

Noting that (H1(FΣ/Fcyc, E(p))∧)Γ is Zp-torsion free and applying the snake lemma, we see that γm0 −1
is injective on F ′. On the other hand, γ0 acts on F ′ continuously and F ′ is finite, and so F ′ is
annihilated by γm0 − 1 when m is sufficiently large. Thus, F ′ = 0, and the proposition follows. □

Next, we show that the map ϕL in the sequence (10.6) is surjective. Let µp∞ be the group of all
p-power roots of unity. We define E∗ = Hom(E , µp∞).

Lemma 10.6. For any place v ∈ Σ, we have H0(Fv, E∗) = 0.

Proof. The result follows from the fact that each v ∈ Σ does not split completely in the extension Fcyc/F
and Burnside’s finite basis theorem. For details, one can refer [28, Lemma 5.2.2]. □

Proposition 10.7. The map ϕL in (10.6) is surjective.
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Proof. Since Λ ' Zp[[T ]], the module E is a divisible Λ-module. Notice our assumption that SE(F ) is a
cotorsion Λ-module, by the exact sequence

0→ SE(F )→ H1(FΣ/F, E)→ QL(F, E)→ coker(ϕL)→ 0

and Lemma 10.4, coker(ϕL) is a cotorsion Λ-module. Set

X2(F,Σ, E) = ker

(
H2(FΣ/F, E)→

∏
v∈Σ

H2(Fv, E)

)
.

From Lemma 10.6 and Tate local duality, we obtain H2(Fv, E) = 0 for each v ∈ Σ. By Lemma 10.4 we
have

X2(F,Σ, E) = H2(FΣ/F, E) = 0.

Therefore we have verified the assumptions in [28, Proposition 3.2.1]. We take any place ς ∈ Σ such that
ς ∤ p∗. This is possible since p splits in K and Σ contains the primes above p. From the local conditions
(10.4), we have

H1(Fς , E)
Lς(E)

= 0.

By Lemma 10.6, H0(Fς , E∗) = 0. Therefore the condition (c) in [28, Proposition 3.2.1] is satisfied and
ϕL is surjective. □

In the final part of this section, we show that for all but finitely many height one λ ∈ Λ, the map on
the λ-torsion submodules

αλ : H1(FΣ/F, E)[λ]→

(∏
v∈Σ

H1(Fv, E)
Lv(E)

)
[λ]

is surjective. From the exact sequence

0→ E [λ]→ E λ−→ E → 0,

we obtain two natural surjective morphisms

(10.7) hλ : H1(FΣ/F, E [λ])→ H1(FΣ/F, E)[λ] and hλ,v : H1(Fv, E [λ])→ H1(Fv, E)[λ].

We consider these modules as (Λ/λ)-modules. We then define the local conditions Lλ = (Lv(E [λ])) for
E [λ] to be

Lv(E [λ]) = h−1
λ,v(Lv(E)[λ]).

Then we can define the Selmer group SE[λ](F ) with respect to E [λ] and Lλ in the same way as we
defined SE(F ). The product of the hλ,v’s for v ∈ Σ defines a surjective map bλ :

∏
v∈ΣH

1(Fv, E [λ]) →(∏
vH

1(Fv, E)
)
[λ]. Note that the image of Lλ is contained in L, thus, we get a well-defined morphism

qλ :
∏
v∈Σ

H1(Fv, E [λ])
Lv(E [λ])

→

(∏
v∈Σ

H1(Fv, E)
Lv(E)

)
[λ].

Lemma 10.8. Assume that E and Lv(E) at each v ∈ Σ are divisible by λ. Then qλ is an isomorphism.

Proof. This is [29, Lemma 3.2.1]. □

From the definitions of the Selmer groups SE(F ) and SE[λ](F ), we obtain the commutative diagram

H1(FΣ/F, E [λ])

hλ

��

ϕλ // ∏
v∈Σ

H1(Fv,E[λ])
Lv(E[λ])

qλ

��

H1(FΣ/F, E)[λ]
αλ //
(∏

v∈Σ
H1(Fv,E)
Lv(E)

)
[λ].

Since E is Λ-divisible, it follows from Lemma 10.8 that qλ is an isomorphism if Lv(E) is λ-divisible.
Furthermore, from (10.7) the left vertical map is surjective, we obtain im(αλ) ' im(ϕλ), and coker(αλ) '
coker(ϕλ). Therefore, showing the surjectivity of αλ is reduced to showing the surjectivity of ϕλ.
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Lemma 10.9. For our local conditions L = (Lv(E))v∈Σ, we have

Lv(E) =

{
0 if v ∤ p
E(Fcyc,v)⊗ (Kp/Op) if v | p.

In particular, L is an almost divisible Λ-module. Here, for any prime v of F above p, we denote by
Fcyc,v the completion of Fcyc at the unique prime above v since we have assumed v is totally ramified in
Fcyc/F .

Proof. For a prime w ∈ B, since w not lying above p, the Kummer descent sequence shows that
H1(Fcyc,w, E(p)) ' H1(Fcyc,w, E)(p).

We now show that H1(Fcyc,w, E)(p) = 0, which implies the above two groups are zero. For p odd
this is easy. We now assume that p = 2. In fact, since E has additive reduction at w and the for-
mal group at w is not pro-p, using Tate local duality, for each integer m ≥ 0, H1(Fm,w, E)(2) is
dual to E(Fm,w)2. The latter group is of uniformly bounded order which is independent of m. Since
H1(Fcyc,w, E)(2) is dual to the projective limit of E(Fm,w)2 with respect to m via the norm maps, we
know that H1(Fcyc,w, E)(2) = 0. Now, using Tate local duality and noting that E(Fcyc)(p

∗) is finite,
for any w ∈ P , we have H1(Fcyc,w, E)(p) = 0. Thus, by the Kummer descent sequence, we obtain
H1(Fcyc,w, E(p)) ' E(Fcyc,w) ⊗ (Kp/Op). Then the first assertion follows. The almost Λ-divisibility of
L follows from [27, Proposition 2.4] and the fact that the dual of E(Fcyc,w)⊗ (Kp/Op) for w | p has no
non-zero finite Λ-submodules.

□

We conclude this appendix with the following proposition, from which Theorem 10.1 follows.

Proposition 10.10. For all but finitely many height one λ ∈ Λ, αλ is surjective.

Proof. By Lemma 10.9, the remark preceding it, and [27, Proposition 2.4], we can reduce to showing
that

ϕλ : H1(FΣ/F, E [λ])→
∏
v∈Σ

H1(Fv, E [λ])
Lv(E [λ])

is surjective for almost all λ such that (λ) = λΛ is a height one prime ideal. Here, we just sketch the
main ingredients for the proof, and the details can be found in [29, Proposition 4.1.1]. The key is that
the module E is a coreflexive Λ-module (since Λ is a UFD, and it is reflexive by [27] or [29, Page 229]).
This guarantees that

(a) the module E [λ] is a divisible (Λ/λ)-module for all height one (λ) ∈ Spec(Λ), see [27, Corollary
2.6.1];

(b) for each place v ∈ Σ, H0(Fv, E∗) = 0 if and only if H0(Fv, (E [λ])∗) = 0 for almost all height one
(λ) ∈ Spec(Λ), where (E [λ])∗ = Hom(E [λ], µp∞), see [29, Page 233];

(c) for almost all height one (λ) ∈ Spec(Λ), the corank relations still hold. For example, SE[λ](F ) is
a cotorsion module over (Λ/λ); see [29, Page 238].

Combining (a)–(c) with our local conditions, we know the method for the proof of Proposition 10.7 still
applies for the Λ/λ-module E [λ] for almost all height one (λ) ∈ Spec(Λ). This completes the proof of the
theorem. □

11. Appendix (II): Isogeny invariance of the product of algebraic p-adic L-function
and complex period of an abelian variety

Let F be a number field, and let A and A′ be two abelian varieties defined over F . Let p be a prime.
We assume that f : A → A′ is an isogeny defined over F with degree a power of p. For each prime w
of F , we denote by κ(w) (respectively, κ(w)) the residue field at w (respectively, a separable algebraic
closure of κ(w)). We assume that both A and A′ have good ordinary reduction at all primes of F above
p. Let C = kerf denote the kernel of f . For each prime v of F above p, we denote by C̃v the reduction
of C modulo v, which becomes a Gal(κ(v)/κ(v))-module. Finally, let C1,v denote the kernel of C(Fv)
modulo v.

Let Fcyc/F be the cyclotomic Zp-extension. We denote by SelA(Fcyc)p the Selmer group of A/Fcyc

corresponding to the p∞-division points of A. Let Λ be the Iwasawa algebra of Gal(Fcyc/F ). We define
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Xp(A/Fcyc) as the Pontryagin dual of SelA(Fcyc)p. The characteristic ideal of Xp(A/Fcyc) is denoted by
CA/F . We assume that CA/F 6= 0, which is equivalent to Xp(A/Fcyc) being a torsion Λ-module.

Theorem 11.1. Assume that F is totally imaginary when p = 2. Then we have the following:

CA′/F = pm(f) · CA/F

and
m(f) =

∑
v|∞

ordp(|C(Fv)|)−
∑
v|p

[Fv : Qp] · ordp(|C1,v|).

Let us give a simple remark. For a compact, finitely generated torsion Λ-module M , we can express
the characteristic ideal CM of M as

CM = pµ(M)RM

where RM is not divisible by p and depends only on the structure of M ⊗Zp
Qp as a ΛQp

-module. It is
clear that the ΛQp

-modules Xp(A
′/Fcyc)⊗Zp

Qp and Xp(A/Fcyc)⊗Zp
Qp are isomorphic. Thus, we have

RA/F = RA′/F .

For simplicity, we denote RXp(A/Fcyc) by RA/F . Furthermore, we define µ(M) = µ(M∧). Theorem 11.1
is equivalent to the following identity:

(11.1) m(f) = µ(SelA′(Fcyc)p)− µ(SelA(Fcyc)p).

Proof. The proof is identical to [41, Théoreme on page 448]. Note that we assume F is totally imagi-
nary, and the cohomology dimensions for the cohomology groups remain the same for odd p. The only
distinction for p = 2 lies in the proof of [41, Lemme 3 on Page 451], where we utilize a fundamental
result by Coates and Greenberg [12, Theorem 3.1] to obtain the same outcome as in [41, Lemme 3 on
Page 451] for p = 2. □

Let A/F be an abelian variety with dimA = d. We write O for OF .

Definition 11.2. The periods Ω(A) of A is defined as follows: Let A/O be the Néron model of A/F ,
and choose ωA satisfies aωA

·ωA = ∧dΓ(A,ΩA/O)
inv for a fractional ideal aωA

of F , where Γ(A,ΩA/O)
inv

denotes the global invariant differential on A/O, then

Ω(A) = N(aωA
)disc(F/Q)−d/2

∫
A(F⊗QR)

|ωA|∞.

Here, one can refer to [21, Lemma 18] for the definition of |ωA|∞.

Recall that f : A→ A′ is an isogeny of abelian varieties defined over F . Recall also that C = Ker(f).
Assume that A has good ordinary reduction at all prime of F above p.

Theorem 11.3. The quotient Ω(A′)
Ω(A) is a nonzero rational number and

ordp (Ω(A
′)/Ω(A)) = −m(f).

From Theorems 11.1 and 11.3, we obtain the isogeny invariance of the product of algebraic p-adic
L-function and complex period of an abelian variety.

To prove Theorem 11.3, let us recall some properties on differential on schemes. Let t : G→ H be a
morphism of S-schemes. There is an exact sequence of OG-modules

(11.2) t∗ΩH/S → ΩG/S → ΩG/H → 0.

Let G,H be group schemes, and assume that t is a group homomorphism. Let eH : S → H (resp.
eG : S → G) be the zero section, K := Ker(t). Then we have i : K = G×H S → G satisfying

eG = i ◦ eK , and i∗(ΩG/H) ' ΩK/S .

We have
e∗GΩG/H ' e∗KΩK/S

Apply e∗G to the exact sequence (11.2), note that pullback is right exact, we have an exact sequence

(11.3) e∗HΩH/S → e∗GΩG/S → e∗KΩK/S → 0.
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Let S = SpecO, fA : A → S, fA′ : A′ → S be Neron models of A/F and B/F over S, and F : A → A′

be the morphism of group schemes over S extend f : A/F → A′/F , C = KerF. From the exact sequence
(11.3), we have an exact sequence of OS-module

(11.4) e∗A′ΩA′/S → e∗AΩA/S → e∗CΩC/S → 0.

Let I = FittO(Γ(S, e
∗
CΩC/S)) ⊂ O be the Fitting ideal. From the above exact sequence (11.4), we have

Lemma 11.4.
f∗(∧dΓ(A′,ΩA′/S)

inv) = I · ∧dΓ(A,ΩA/S)
inv

in ∧dΓ(A,ΩA/S)
inv.

For an ideal b in F , we write N(b) for the norm of b.

Corollary 11.5. We have

Ω(A)/Ω(A′) = N(I)−1
∏
v|∞

|C(Fv)|.

Proof. Choose ωA′ and aωA′ as in Definition 11.2. For an archimedean place v of F , we have∫
A′(Fv)

ωA′ = |C(Fv)|−1

∫
f∗A(Fv)

ωA′ = |C(Fv)|−1

∫
A(Fv)

f∗ωA′ .

By Corollary 11.4, we can choose (ωA = f∗ωA′ , aωA
= I−1aωA′ ) as in Definition 11.2. Then we have

Ω(A′) = N(aωA′ )disc(F/Q)−d/2

∫
A′(F∞)

|ωA′ |∞

= N(aωA′ )disc(F/Q)−d/2
∏
v|∞

|(C(Fv))|−1

∫
A(F∞)

|ωA|∞

= N(I)
∏
v|∞

|(C(Fv))|−1N(aωA
)disc(F/Q)−d/2

∫
A(F∞)

|ωA|∞

= N(I) ·
∏
v|∞

|(C(Fv))|−1Ω(A),

which completes the proof. □

Let p be a prime. For any p|p primes of F , let Sp = SpecOp, Cp := C ×S Sp. Assume that A has
good reduction at p, then Cp/Sp is a finite flat group scheme. It is well known that there is an exact
sequence of group scheme

0→ C0p → Cp → Cét
p → 0,

where C0p is the connect component of Cp, Cét
p is etale over Sp. Similarly, we have an exact sequence

e∗Cét
p
ΩCét

p /Sp
→ e∗Cp

ΩCp/Sp
→ e∗C0

p
ΩC0

p/Sp
→ 0.

However, since Cét
p /Sp is etale, we have ΩCét

p /Sp
= 0, hence we have

Lemma 11.6. e∗Cp
ΩCp/Sp

' e∗C0
p
ΩC0

p/Sp
.

Lemma 11.7. Assume that A is ordinary at p. Then

|Γ(Sp, e
∗
C0
p
ΩC0

p/Sp
)| = |C0

1,p|[Fp:Qp].

Proof. Since A is ordinary at p, C0p is of multiplicative type ([48, Page 169]). □

Now Theorem 11.3 comes from Corollary 11.5, and Lemmas 11.6, 11.7.
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