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Abstract. Let E/Q be an elliptic curve, K an imaginary quadratic field, and let p > 2 be a prime that

splits in K and at which E has good ordinary reduction. Assume that the residual Galois representation

associated with (E, p) is irreducible. In this paper, we establish new cases of the two-variable Iwasawa
main conjecture for E over K. As applications, we obtain more general results on the p-converse theorem

and the p-part of the Birch and Swinnerton-Dyer formula in rank at most one.
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1. Introduction

Let E be an elliptic curve over Q. Fix an odd prime p and embeddings ιp : Q ↪→ Qp, ι∞ : Q ↪→ C.
Let TpE denote the p-adic Tate module of E, and let ρE : GQ → AutZp(TpE) be the associated p-adic
Galois representation. Suppose that E has good ordinary reduction at p.

To study the arithmetic properties of E, such as those predicted by the Birch and Swinnerton-Dyer
conjecture, one often turns to tools from Iwasawa theory. There are two central objects in Iwasawa
theory: Selmer groups over Iwasawa extensions and p-adic L-functions. The Iwasawa main conjectures
establish a deep connection between them.

Let K be an imaginary quadratic field. Suppose that p = pp̄ splits in K, where p is the prime
determined by the embedding ιp. Let K+

∞ and K−
∞ denote the cyclotomic and anticyclotomic Zp-

extensions of K, respectively, and set K∞ = K+
∞K

−
∞. Then the associated Iwasawa algebras are given

by

Λ±
K = Zp[[Gal(K±

∞/K)]], ΛK = Zp[[Gal(K∞/K)]].
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For any locally compact Zp-module M , let M∨ := Homcont(M,Qp/Zp) denote its Pontryagin dual.
We consider the following two types of Selmer groups over K∞:

(1) the ΛK-module Selmer group H1
Ford

(K,TpE ⊗ Λ∨
K), with ordinary local conditions at v | p;

(2) the ΛK-module Selmer group H1
FGr

(K,TpE ⊗ Λ∨
K), with relaxed local conditions at v = p and

strict conditions at v = p̄.

As in Castella–Grossi–Skinner [CGS23], we have two versions of the two-variable p-adic L-function:

(1) LPR
p (E/K) ∈ ΛK , which interpolates the algebraic parts of L(E/K,χ−1, 1) for finite order char-

acters χ of Gal(K∞/K);
(2) LGr

p (E/K) ∈ Λur
K := ΛK⊗̂ZpZur

p , which interpolates the algebraic parts of L(E/K,χ, 1) for
characters χ of Gal(K∞/K) with infinity type (b, a) such that a ≤ −1 and b ≥ 1, where Zur

p

denotes the ring of integers of the maximal unramified extension of Qp.

Conjecture 1.1. Suppose that the residual representation ρ̄E |GK
is irreducible.

(1) H1
Ford

(K,TpE ⊗ Λ∨
K)∨ is a torsion ΛK-module and

CharΛK

(
H1

Ford
(K,TpE ⊗ Λ∨

K)∨
)
=

(
LPR
p (E/K)

)
.

(2) H1
FGr

(K,TpE ⊗ Λ∨
K)∨ is a torsion ΛK-module and

CharΛK

(
H1

FGr
(K,TpE ⊗ Λ∨

K)∨
)
Λur
K =

(
LGr
p (E/K)

)
.

1.1. Main result.

Theorem 1.2. Suppose that the Heegner hypothesis holds (in particular, sign(E/K) = −1), and that
ρ̄E |GK

is absolutely irreducible. Then:

(1) H1
Ford

(K,TpE ⊗ Λ∨
K)∨ is a torsion ΛK-module, and

CharΛK

(
H1

Ford
(K,TpE ⊗ Λ∨

K)∨
)
⊂

(
LPR
p (E/K)

)
.

(2) H1
FGr

(K,TpE ⊗ Λ∨
K)∨ is a torsion ΛK-module, and

CharΛK

(
H1

FGr
(K,TpE ⊗ Λ∨

K)∨
)
Λur
K ⊂

(
LGr
p (E/K)

)
.

Moreover, if

(Im) there exists τ ∈ Gal(Q/Q(µp∞)) such that TpE/(ρE(τ)− 1)TpE is free of Zp-rank one,

then Conjecture 1.1 holds.

Skinner–Urban [SU14] first proved Conjecture 1.1(1) using Eisenstein congruences on GU(2, 2) un-
der certain assumptions, in particular when sign(E/K) = +1. Wan [Wan20, Wan21] proved Con-
jecture 1.1(2) via Eisenstein congruences on GU(3, 1) under different assumptions, specifically when
sign(E/K) = −1 and E is semistable.

In [BSTW24], Burungale-Skinner-Tian-Wan established an equivalence between parts (1) and (2) of
Conjecture 1.1 by employing Beilinson–Flach elements and an explicit reciprocity law. This, combined
with the result of Skinner–Urban concerning Conjecture 1.1(1), enabled them to prove new cases of
Conjecture 1.1(2).

Our proof of Theorem 1.2 adopts an approach similar to that presented in [BSTW24]. A key obser-
vation is that, under more general conditions, Skinner–Urban in fact proved that the left-hand side of
Conjecture 1.1(1) is contained in the right-hand side after tensoring with the field of fractions of Λ+

K .
To achieve full equality, they applied Vatsal’s non-vanishing result [Vat03] on the µ-invariant of the
anticyclotomic projection of LPR

p (E/K) to show that ordP (LPR
p (E/K)) = 0 for height-one primes P of

ΛK coming from Λ+
K . This required the following conditions:

(1) N = N+N−, where N+ is divisible only by primes that split in K and N− is a square-free
product of an odd number of primes that are inert in K, implying sign(E/K) = +1;

(2) For every ℓ | N−, the residual representation satisfies ρ̄E |Iℓ ̸≡ 1, where Iℓ is the inertia subgroup
at ℓ.

In particular, this forces E to have a bad semistable prime.
In this paper, using the equivalence in [BSTW24], we translate Skinner–Urban’s results on Conjec-

ture 1.1(1) into the setting of Conjecture 1.1(2). This allows us to conclude that the left-hand side of
Conjecture 1.1(2) is contained in the right-hand side after tensoring with the fractional field of Λ+

K .
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To obtain a full inclusion, we apply Hsieh’s result [Hsi14] on the non-vanishing of the µ-invariant
of the anticyclotomic projection of LGr

p (E/K) in the case sign(E/K) = −1. Since we work under the
Heegner hypothesis, we can avoid the assumption that E has a bad semistable prime.

As in [SU14], we then invoke Kato’s theorem on Mazur’s main conjecture [Kat04] to complete the
proof of Theorem 1.2.

Remark 1.3. Recently, using Wan’s extension of Skinner–Urban’s method to the setting of Hilbert mod-
ular forms [Wan15], together with a base change argument, Burungale–Castella–Skinner [BCS25] proved
the rational version of Conjecture 1.1 (i.e., equality after tensoring with Qp) under the assumptions that
p > 3 and ρ̄E is irreducible, and proved the integral version when condition (Im) also holds.

Roughly speaking, by choosing a suitable real quadratic field F and a CM extension K ′/F with
[K ′ : F ] = 2, they study a three-variable main conjecture for EF /K

′ analogous to Conjecture 1.1(1).
Following Skinner–Urban’s method, Wan proves one direction of the divisibility result, similar to [SU14],
and applies a non-vanishing theorem for the µ-invariant of an anticyclotomic p-adic L-function over
totally real fields [Hun17].

In their setup, the analogue of N− is a square-free product of an even number of primes of F inert in
K ′, which in particular may be trivial. Thus, they can derive results on various main conjectures for E
without requiring E to have bad semistable reduction. Their arguments require p > 3 in order to apply
[Hun17], but do not require (E,K) to satisfy the Heegner hypothesis.

As an application, we prove additional cases of one-variable main conjectures, the p-part of the Birch
and Swinnerton-Dyer formula, and the p-converse theorem.

Corollary 1.4. Let E/Q be an elliptic curve of conductor N , and let p ∤ 2N be a prime at which E has
good ordinary reduction. If r ≤ 1, then the following are equivalent:

(1) corankZp
Selp∞(E/Q) = r;

(2) ords=1 L(E/Q, s) = r.

Moreover, under either condition, if (Im) also holds, then the p-part of the Birch and Swinnerton-Dyer
formula for E holds.

Remark 1.5. There has been extensive work on the p-part of the Birch and Swinnerton-Dyer formula
and the p-converse theorem for elliptic curves. In our context, see [SU14], [Zha14], [JSW17], [BSTW24],
[BCS25] for earlier results on the p-part of the BSD formula, and [Ski20], [Zha14], [BSTW24], [BCGS23]
for related results on the p-converse theorem.

1.2. Strategy. By [CGS23, Proposition 3.2.1] or [BSTW24, Proposition 9.18], the use of Beilinson–Flach
elements, combined with an explicit reciprocity law, establishes a connection between various formula-
tions of the main conjectures. As a result, the inclusion relations (and their converses) in Theorem 1.2(1)
and (2) are shown to be equivalent.

From the work of Skinner–Urban [SU14], especially Theorem 7.7 and Proposition 13.6(1), we have
the following:

Theorem 1.6. Suppose that the residual representation ρ̄E : GQ → Aut(E[p]) is irreducible. Then for
any height-one prime P of ΛK , we have

ordP
(
CharΛK

(
H1

Ford
(K,TpE ⊗ Λ∨

K)∨
))
≥ ordP

(
LPR
p (E/K)

)
,

unless P = P+ΛK for some height-one prime P+ ⊂ Λ+
K .

Following [BSTW24, Proposition 9.18] (or [CGS23, Proposition 3.2.1]), we have:

Theorem 1.7. Under the same assumptions as in the previous theorem, for any height-one prime P of
Λur
K , we have

ordP
(
CharΛK

(
H1

FGr
(K,TpE ⊗ Λ∨

K)∨
)
Λur
K

)
≥ ordP

(
LGr
p (E/K)

)
,

unless P = P+Λur
K for some height-one prime P+ ⊂ Λur,+

K .

However, by the result on the µ-invariant of the BDP p-adic L-function due to Hsieh [Hsi14], if P ⊂ Λur
K

is a height-one prime of the form P = P+Λur
K for some P+ ⊂ Λur,+

K , then

ordP
(
LGr
p (E/K)

)
= 0.

Therefore, Theorem 1.2(2) holds, which implies that Theorem 1.2(1) also holds. Moreover, if condition
(Im) is satisfied, then as in [SU14, Theorem 3.30], we conclude that Conjecture 1.1(2) holds, and hence
so does Conjecture 1.1(1).
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2. Selmer groups

Let K be an imaginary quadratic field with discriminant DK , and let p > 2 be a prime that splits in
K, say pOK = pp̄. Let Q∞ denote the cyclotomic Zp-extension of Q, and let K∞ be the Z2

p-extension of

K. We write K+
∞ and K−

∞ for the cyclotomic and anticyclotomic Zp-extensions of K, respectively.
Define the Galois groups

ΓQ := Gal(Q∞/Q), ΓK := Gal(K∞/K), Γ±
K := Gal(K±

∞/K).

We identify Γ+
K = Gal(K+

∞/K) with ΓQ = Gal(Q∞/Q). Let γ± be a topological generator of Γ±
K .

Let
ΛQ := Zp[[ΓQ]], ΛK := Zp[[ΓK ]], Λ±

K := Zp[[Γ±
K ]]

be the associated Iwasawa algebras. These rings are equipped with natural characters

εQ : GQ ↠ ΓQ ↪→ Λ×
Q , εK : GK ↠ ΓK ↪→ Λ×

K , εK,± : GK ↠ Γ±
K ↪→ Λ±,×

K

arising from projection. The Pontryagin duals Λ∨
Q, Λ

∨
K , and Λ±,∨

K are endowed with GQ- or GK-actions
via the inverses of these characters.

Throughout this paper, we normalize the reciprocity map of class field theory so that uniformizers cor-
respond to arithmetic Frobenius elements. With this convention, we identify algebraic Hecke characters
with their associated Galois characters.

2.1. Selmer groups for Iwasawa algebras. Let E/Q be an elliptic curve of conductor N with
(N,DK) = 1. We assume that E has good ordinary reduction at p.

Discrete Selmer groups. Let F be either Q or K. For a prime w of F above p, let Fw be the residue
field at w, and let Ẽ/Fw

be the reduction of E. The kernel of the reduction map on the Tate module is

denoted by F+
w TpE := ker

(
TpE → TpẼ/Fw

)
.

Definition 2.1. For Λ any of ΛQ,ΛK , or Λ±
K , and for a prime w of F over p, we define the following

local conditions:

(1) H1
ord(Fw, TpE ⊗ Λ∨) := Im

(
H1(Fw,F+

w TpE ⊗ Λ∨)→ H1(Fw, TpE ⊗ Λ∨)
)
,

(2) H1
rel(Fw, TpE ⊗ Λ∨) := H1(Fw, TpE ⊗ Λ∨),

(3) H1
str(Fw, TpE ⊗ Λ∨) := 0.

Let Σ be a set of places of F containing all places dividing pN∞. In the anticyclotomic case (F =
K,Λ = Λ−

K), we assume moreover that every finite place in Σ splits completely in K/Q. Let FΣ be the
maximal extension of F unramified outside Σ, and let GF,Σ := Gal(FΣ/F ).

In the case F = Q, for a ∈ {ord, str, rel} and M = TpE ⊗ Λ∨
Q, we define the Selmer group

H1
Fa

(Q,M) := ker

H1(GQ,Σ,M)→
∏

q∈Σ,q∤p∞

H1(Qq,M)× H1(Qp,M)

H1
a(Qp,M)

 .

Its Pontryagin dual is denoted by

XFa
(E/Q∞) := H1

Fa
(Q, TpE ⊗ Λ∨

Q)
∨.

In the case F = K, for a, b ∈ {ord, str, rel}, Λ ∈ {ΛK ,Λ−
K ,Λ

+
K}, and M = TpE ⊗ Λ∨, we define

H1
Fa,b

(K,M) := ker

H1(GK,Σ,M)→
∏

q∈Σ,q∤p

H1(Kq,M)× H1(Kp,M)

H1
a(Kp,M)

× H1(Kp̄,M)

H1
b (Kp̄,M)

 .

For simplicity, we write

(1) H1
Fa

(K,M) := H1
Fa,a

(K,M) for a ∈ {ord, str, rel},
(2) H1

Gr(K,M) := H1
Frel,str

(K,M).

For a ∈ {ord, str, rel,Gr}, we define the dual Selmer groups

XFa
(E/K∞) := H1

Fa
(K,TpE ⊗ Λ∨

K)∨, XFa
(E/K±

∞) := H1
Fa

(K,TpE ⊗ Λ±,∨
K )∨.

For any prime q of K, let Iq denote the inertia subgroup of GKq
.
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Lemma 2.2. For any prime q ∤ p of K, we have:

(1) H1(GKq
/Iq, (TpE ⊗ Λ∨

K)Iq) = 0.

(2) CharΛK
((H1(Iq, TpE ⊗ Λ∨

K)GKq )∨) = (Pq(εK(Frob−1
q ))), where

Pq(X) = det
(
1−Nm(q)−1X · Frobq | VpEIq

)
.

Proof. For simplicity, let M := TpE ⊗ Λ∨
K and N := TpE ⊗ ΛK . We have a natural GK-equivariant

perfect pairing
M ×N → Qp/Zp(1),

which induces the perfect local Tate pairing

H1(Kq,M)×H1(Kq, N)→ Qp/Zp
for every place q. Let q ∤ p be a prime of K.

(1) Since GKq
/Iq = ⟨Frobq⟩ ≃ Ẑ has cohomological dimension 1, the groups H1(GKq

/Iq, N
Iq) and

H1(GKq
/Iq,M

Iq) annihilate each other under local Tate duality. The inflation-restriction exact sequence
is

0→ H1(GKq
/Iq, N

Iq)→ H1(GKq
, N)→ H1(Iq, N)GKq → 0.

Thus, to prove (1), it suffices to show that H1(Iq, N)GKq = 0.
Since q ∤ p, the inertia group Iq contains a unique closed subgroup Jq such that Iq/Jq ≃ Zp(1) as a

Gal(Kur
q /Kq)-module, and Jq has pro-finite order prime to p. The inflation-restriction sequence yields

H1(Iq, N) ∼= H1(Iq/Jq, N
Jq).

Let N0 := TpE
Jq . Since εK(Iq) = 1, we have NJq = N0 ⊗ ΛK . Let σq be a topological generator of

Iq/Jq. For any cocycle ϕ representing a class in H1(Iq/Jq, N0 ⊗ΛK)GKq and any g ∈ GKq
, we have the

relation g · ϕ = ϕ. This implies that for some integer r = r(g),

g−1(ϕ(σq)) = ϕ(g−1σqg) = ϕ(σrq) = (1 + σq + · · ·+ σr−1
q )ϕ(σq).

As q does not split completely in K∞/K, the image εK(GKq
) is non-trivial. We can therefore choose

g such that εK(g) ̸= 1. However, since εK(σq) = 1, it follows that ϕ(σq) = 0, which implies that

H1(Iq, N)GKq = 0.
(2) Now we prove the second part. As before, we have the duality

(H1(Iq,M)GKq )∨ ≃ H1(GKq
/Iq, N

Iq).

Since
H1(GKq

/Iq, N
Iq) ≃ (TpE

Iq ⊗ ΛK)/(1− Frob−1
q ),

it follows that
FittΛK

((H1(Iq,M)GKq )∨) = (Pq(εK(Frob−1
q ))).

This Fitting ideal is principal and therefore divisorial. The characteristic ideal CharΛK
((H1(Iq,M)GKq )∨)

is the minimal divisorial ideal containing the Fitting ideal. Hence, we have

CharΛK
((H1(Iq,M)GKq )∨) = (Pq(εK(Frob−1

q ))).

□

Lemma 2.3. The natural Λ−
K-module homomorphism

XFGr
(E/K∞)/(γ+ − 1)XFGr

(E/K∞)→ XFGr
(E/K−

∞)

is a pseudo-isomorphism.

Proof. The result follows from [Wan21, Proposition 3.1] combined with Lemma 2.2(1). Note that in our
case, every finite place in Σ splits in K. □

We also consider an imprimitive Selmer group. For M = TpE ⊗ Λ∨
K , we define

H1
FΣ

ord
(K,M) := ker

H1(GK,Σ,M)→
∏
q|p

H1(Kq,M)

H1
ord(Kq,M)


and its Pontryagin dual XΣ

Ford
(E/K∞) := H1

FΣ
ord

(K,M)∨.

In the proof of [SU14, Lemma 3.16], the following conclusion is essentially demonstrated.

Lemma 2.4. XΣ
Ford

(E/K∞) is a torsion ΛK-module.
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Combining with Lemma 2.2, we have the following corollary.

Corollary 2.5. XFord
(E/K∞) is ΛK-torsion, and

CharΛK
(XΣ

Ford
(E/K∞)) ⊃ CharΛK

(XFord
(E/K∞))

∏
q∈Σ−{p,p̄}

(Pq(εK(Frob−1
q ))).

2.2. Selmer groups for Hida families. Let W be an indeterminate and ΛW = Zp[[W ]]. We identify
ΛW with Λ+

K by mapping the topological generator γ+ to 1+W , which induces the character εW : GK →
Λ×
W .
Let L ⊂ Q̄p be a finite extension of Qp with ring of integers O. Let I be a local reduced finite

integral extension of ΛW,O := ΛW ⊗Zp
O. Recall that a continuous O-algebra homomorphism ϕ ∈

Homcont O-alg(I, Q̄p) is said to be arithmetic if it satisfies the condition ϕ(1 +W ) = ζϕ(1 + p)kϕ−2 for
some p-power root of unity ζϕ and some integer kϕ. Let tϕ > 0 be the integer such that ζϕ is a primitive
ptϕ−1-th root of unity, and let χϕ : A×

Q/Q× → µp∞ be the unique character that has a p-power conductor

and satisfies χϕ,p(1 + p) = ζ−1
ϕ . We define the set of arithmetic points with weight kϕ ≥ 2 as

XaI,O =
{
ϕ ∈ Homcont O-alg(I, Q̄p) : ϕ is arithmetic , kϕ ≥ 2

}
.

Let f be an I-adic ordinary eigenform of tame level N and trivial nebentypus, namely a formal q-
expansion f =

∑
n=1 an(f)q

n ∈ I[[q]] with the property that for any arithmetic point ϕ ∈ XaI,O, the
corresponding specialization

fϕ =
∑
n=1

ϕ(an(f))q
n

is an ordinary modular form in the space Mkϕ(Np
tϕ , ωkϕ−2χϕ;ϕ(I)). Here, ω denotes the Teichmüller

character.
We assume that f satisfies the following irreducibility condition:

(irredf ) the residue representation of ρfϕ is irreducible for some (hence all) ϕ ∈ XaI,O.

Under this condition, there exists a continuous, I-linear Galois representation ρf : GQ → GLI(Tf ), where
the representation space Tf is a free I-module of rank two. This representation is unramified at all primes
ℓ ∤ Np and is uniquely characterized by the relations:

trρf (Frobℓ) = aℓ(f), ℓ ∤ Np,
and

det(ρf ) = ϵεW ,

where ϵ is the p-adic cyclotomic character.
Let FI be the field of fractions of the integral domain I, and let Vf := Tf ⊗I FI. Since f is ordinary,

there exists a one-dimensional FI-subspace V
+
f ⊂ Vf that is stable under the action of GQp

. Furthermore,

GQp
acts on the quotient space V −

f := Vf/V
+
f via an unramified character δf , which is characterized by

the condition δf (Frobp) = ap(f). The intersection T+
f := Tf ∩ V +

f is then a rank-one free I-summand of

Tf . Consequently, the quotient module T−
f := Tf/T

+
f is also a free I-module of rank one.

Let E/Q be an elliptic curve with good ordinary reduction at p. Let f be an I-adic ordinary eigenform,
and let ϕ ∈ XaI,O be a weight 2 arithmetic specialization (i.e., ϕ(1 +W ) = 1) such that the specialized

form ϕ(f) is the p-stabilization of the newform associated to E.

Lemma 2.6. For every prime q of K dividing p, we have H1
(
GKq

/Iq, (TpẼ/Fq
⊗ Λ∨

K)Iq
)
= 0.

Proof. Let αq : GKq
→ Z×

p be the unramified character associated to TpẼ/Fq
. The action of GKq

on

the module TpẼ/Fq
⊗ Λ∨

K is then given by the character αqε
−1
K . Let Cq ⊂ ΛK be the ideal generated

by the set {εK(g) − 1 : g ∈ Iq}, and let σq ∈ GKq
be a lift of Frobq. A standard calculation yields the

isomorphism:

H1
(
GKq

/Iq, (TpẼ/Fq
⊗ Λ∨

K)Iq
)
≃ Homcts

(
(ΛK/Cq)

εK(σq)=α
−1
q (Frobq),Qp/Zp

)
,

where (ΛK/Cq)
εK(σq)=α

−1
q (Frobq) denotes the submodule of ΛK/Cq annihilated by the operator εK(σq)−

α−1
q (Frobq). Since αq(Frobq) is not a root of unity, this submodule must be trivial. This completes the

proof. □

Corollary 2.7. Let pϕ := kerϕ. Then there is a natural isomorphism:

XΣ
Ford

(f/K∞)/pϕXΣ
Ford

(f/K∞)⊗I,ϕ O ≃ XΣ
Ford

(E/K∞).
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Proof. The result follows from [SU14, Proposition 3.7], as the preceding lemma verifies that the necessary
local conditions at primes above p are satisfied. □

3. p-adic L-functions

3.1. A three-variable p-adic L-function. Let f be an I-adic ordinary eigenform of tame level N and

trivial character as described in Section 2.2. Suppose L contains Q[µNp, i,D
1/2
K ].

Define

XaIK ,O := {ϕ ∈ Homcont O-alg(IK , Q̄p) : ϕ|I ∈ XaI,O, ϕ(γ
+) = ζ+(1 + p)kϕ|I−2, ϕ(γ−) = ζ−},

where ζ± are p-power roots of unity. For each ϕ ∈ XaIK ,O, let kϕ, tϕ, and χϕ be the corresponding data

associated with ϕ|I. Define

ξϕ := ϕ ◦ (εK/εW ), θϕ := ω2−kϕχ−1
ϕ ξϕ.

These are finite-order idele class characters of A×
K . For an idele class character ψ, denote its conductor

by fψ. Set

X′
IK ,O := {ϕ ∈ XaIK ,O : p | fξϕ , ptϕ | Nm(fξϕ), p | fθϕ}.

Theorem 3.1 ([SU14], Section 3.4.5). Let Σ be a finite set of primes containing all primes dividing
pNDK . Let f be an I-adic ordinary eigenform of tame level N and trivial character. Assume f satisfies
(irredf ). Then there exists LΣ

f ,K ∈ IK such that for every ϕ ∈ X′
IK ,O,

LΣ
f ,K(ϕ) =ufϕap(fϕ)

−ordp(Nm(fθϕ ))

×
((kϕ − 2)!)2g(θ−1

ϕ )Nm(fθϕδK)kϕ−2LΣ(fϕ/K, θ
−1
ϕ , kθϕ − 1)

(−2πi)2kϕ−2Ω+
fϕ
Ω−

fϕ

,

where ufϕ is a p-adic unit depending only on fϕ, g(θ
−1
ϕ ) is the global Gauss sum, δK is the differential

ideal, and Ω±
fϕ

are the canonical periods associated to fϕ.

Remark 3.2. Note that we adopt the arithmetic Frobenius normalization for the reciprocity map of class
field theory, whereas [SU14] employs the geometric Frobenius convention.

3.2. Two variable p-adic L-functions: type I. Let f =
∑
n anq

n ∈ S2(Γ0(N)) be a newform with
p ∤ ap, and let cf ∈ Zp be the congruence number associated with f as defined in [Hid81, Section 7] or
[Rib83].

Theorem 3.3 ([CGS23], Theorem 1.2.1). There exists an element LIp(f/K) ∈ c−1
f ΛK such that for

every finite-order nontrivial character ξ of ΓK ,

LIp(f/K)(ξ) =W (ξ)pordp(Nm(fξ))/2α
−ordp(Nm(fξ))
p

(
1− p

α2
p

)−1 (
1− 1

α2
p

)−1
L(f/K, ξ−1, 1)

8π2⟨f, f⟩
,

where αp is the p-adic unit root of the polynomial x2−apx+ p, ⟨f, g⟩ =
´
Γ0(N)\H f(τ)g(τ)dτ denotes the

Petersson inner product on S2(Γ1(N)), and W (ξ) is the Artin root number.

Let E/Q be an elliptic curve with good ordinary reduction at the prime p. Let fE ∈ S2(Γ0(N)) denote
the newform associated with E, and let πE : X0(N)→ E be a modular parametrization.

Definition 3.4 (Perrin-Riou’s p-adic L-function). Define Perrin-Riou’s p-adic L-function as

LPR
p (E/K) :=

(
1− p

α2
p

)(
1− 1

α2
p

)
· deg(πE)

c2E
· LIp(fE/K) ∈ ΛK ,

where cE denotes the Manin constant.

Let f be an I-adic ordinary eigenform and ϕ ∈ XaI,O as in Section 2.2, with ϕ(1+W ) = 1 and fϕ equal
to the p-stabilization of fE .

Proposition 3.5. Assume that the residual representation ρ̄E : GQ → Aut(E[p]) is irreducible. Then

LΣ
f ,K(ϕ⊗ id) = α ·

∏
q∈Σ,q∤p

Pq(εK(Frob−1
q )) · LPR

p (E/K),

where

Pq(X) = det(1−Nm(q)−1X · Frobq | VpEIq)
7



is the local Euler factor, α is a p-adic unit independent of ξ, and

ϕ⊗ id : IK = I⊗̂ΛK → ϕ(I)⊗ ΛK

is the natural homomorphism.

Proof. We have W (ξ) = g(ξ̄)/
√
Nm(fξ). By [Maz78, Corollary 4.1], cE is a p-adic unit. According to

[CGS23, Lemma 3.1.2], deg(πE) = cfE up to a p-adic unit. Additionally, [SZ14, Lemma 9.5] shows that

⟨fE , fE⟩
cfE

= i(2πi)2Ω+
fE

Ω−
fE
.

These results establish the desired equality. □

3.3. Cyclotomic p-adic L-function. Let E/Q be an elliptic curve with good ordinary reduction at
the prime p. Choose generators δ± of H1(E,Z)±, and define the Néron periods Ω±

E by

Ω±
E =

ˆ
δ±
ωE ,

where ωE is a minimal differential on E. We normalize δ± so that Ω+
E ∈ R>0 and Ω−

E ∈ iR>0.
Let ap be the Fourier coefficient of the newform fE associated with E, and let αp be the p-adic unit

root of x2 − apx+ p, as defined previously.

Theorem 3.6 ([CGS23], Theorem 1.1.1). There exists an element LMSD
p (E/Q) ∈ ΛQ such that for every

finite-order character χ of ΓQ,

LMSD
p (E/Q)(χ) =


pr

g(χ)αr
p
· L(E,χ,1)

Ω+
E

, χ is of conductor pr ̸= 1,

(1− α−1
p )2 · L(E,1)

Ω+
E

, χ = 1.

where g(χ) =
∑
a mod pr χ(a)e

2πia/pr is the Gauss sum.

Let LPR
p (E/K)+ ∈ ΛQ ≃ Λ+

K be the image of LPR
p (E/K) under the map induced by the projection

ΓK ↠ Γ+
K ≃ ΓQ.

Proposition 3.7 ([CGS23], Proposition 1.2.4). We have

LPR
p (E/K)+ = LMSD

p (E/Q) · LMSD
p (EK/Q),

up to a unit in Λ×
Q , where E

K is the quadratic twist of E by the character corresponding to the quadratic

extension K/Q.

3.4. Two variable p-adic L-functions: type II.

Theorem 3.8 ([CGS23], Theorem 1.4.1). There exists an element LIIp (f/K) ∈ Frac ΛK such that for
every character ξ of ΓK crystalline at both p and p̄, and of infinity type (b, a) with a ≤ −1 and b ≥ 1,

LIIp (f/K)(ξ) =
2a−bib−a−1Γ(b+ 1)Γ(b)Na+b+1

(2π)2b+1⟨θξb , θξb⟩
· E(ξ, f, 1)
(1− ξ1−τ (p̄))(1− p−1ξ1−τ (p̄))

· L(f/K, ξ, 1),

where θξb is the theta series associated to the Hecke character ξb = ξ|·|−b, τ denotes complex conjugation,
and

E(ξ, f, 1) = (1− p−1ξ(p̄)αp)(1− ξ(p̄)α−1
p )(1− p−1ξ−1(p)αp)(1− ξ−1(p)α−1

p ).

Let Λur
K := ΛK⊗̂Zur

p , where Zur
p is the completion of the ring of integers of the maximal unramified

extension of Qp.

Theorem 3.9 ([dS87], Chapter 2, Theorem 4.14). There exists an element Lp(K) ∈ Λur
K such that for

every character ξ of ΓK of infinity type (j, k) with 0 ≤ −j ≤ k,

Lp(K)(ξ) =
Ωk−jp

Ωk−jK

· Γ(k) ·
(√

DK

2π

)j
· (1− ξ−1(p)p−1)(1− ξ(p̄)) · L(ξ, 0),

where Ωp and ΩK are the CM periods associated with K.

Definition 3.10 (Greenberg’s p-adic L-function). Define Greenberg’s p-adic L-function as

LGr
p (f/K) := hK · Lp(K)′ · LIIp (f/K),

where hK denotes the class number of K, and Lp(K)′ is the image of Lp(K) under the map Λur
K → Λur

K ,
γ 7→ γ1−τ for γ ∈ ΓK .
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Lemma 3.11 ([CGS23], Lemma 1.4.4). Greenberg’s p-adic L-function LGr
p (f/K) is integral, i.e., it

belongs to Λur
K .

3.5. BDP p-adic L-function. Assume that DK is odd, DK ̸= −3, and that the Heegner hypothesis
holds. Fix an integral ideal n ⊂ OK satisfying OK/n ≃ Z/NZ. Define Λur,±

K := Λ±
K⊗̂Zur

p .

Theorem 3.12 ([CGLS22], Theorem 2.1.1). There exists an element LBDP
p (f/K) ∈ Λur,−

K character-

ized by the following interpolation property: for every character ξ of Γ−
K crystalline at both p and p̄,

corresponding to a Hecke character of K of infinity type (n,−n) with n ∈ Z>0 and n ≡ 0 mod p− 1,

LBDP
p (f/K)(ξ) =

Ω4n
p

Ω4n
K

· Γ(n)Γ(n+ 1)ξ(n−1)

4(2π)2n+1
√
DK

2n−1 ·
(
1− apξ(p̄)p−1 + ξ(p̄)2p−1

)2 · L(f/K, ξ, 1).
Let LGr

p (f/K)± denote the image of LGr
p (f/K) under the natural projection Λur

K → Λur,±
K . We have

the following proposition.

Proposition 3.13 ([CGS23], Proposition 1.4.5).

LGr
p (f/K)− · Λur,−

K = LBDP
p (f/K) · Λur,−

K .

4. Main conjectures over K∞

4.1. Two variable Iwasawa main conjectures. Let E/Q be an elliptic curve of conductor N and
p > 2 be a prime at which E has good ordinary reduction. Let K be an imaginary quadratic field in
which the prime p splits, i.e., pOK = pp̄. Assume that the residual representation

ρ̄E |GK
: GK → Aut(E[p])

is irreducible.
Let f be the newform associated to E. For the remainder of this paper, we will denote LGr(f/K)

by LGr(E/K), and similarly LGr
p (f/K)± and LBDP(f/K) by analogous notation involving E/K. We

consider the following two-variable Iwasawa main conjectures:

Conjecture 4.1. (1) XFord
(E/K∞) is ΛK-torsion and

CharΛK
(XFord

(E/K∞)) = (LPR
p (E/K)).

(2) XFGr
(E/K∞) is ΛK-torsion and

CharΛK
(XFGr

(E/K∞))Λur
K = (LGr

p (E/K)).

The main theorem we will establish is the following:

Theorem 4.2. Suppose the residual representation ρ̄E |GK
: GK → Aut(E[p]) is absolutely irreducible.

If the Heegner hypothesis holds (in particular, sign(E/K) = −1), then:
(1) XFord

(E/K∞) is ΛK-torsion and

CharΛK
(XFord

(E/K∞)) ⊂ (LPR
p (E/K)).

(2) XFGr
(E/K∞) is ΛK-torsion and

CharΛK
(XFGr

(E/K∞))Λur
K ⊂ (LGr

p (E/K)).

Moreover, if condition (Im) holds, then Conjecture 4.1 is true.

We will prove Theorem 4.2 in the following two subsections.

4.2. A three variable Iwasawa main conjecture. Let f be an I-adic ordinary eigenform of tame level

N and trivial nebentypus as in Section 2.2. Suppose that L ⊃ Q[µNp, i,D
1/2
K ], I is a normal domain, and

f satisfies (irredf ).

Conjecture 4.3 ([SU14]). Let Σ be a finite set of primes containing all primes dividing pNDK . Then

CharIK (XΣ
Ford

(f/K∞)) = (LΣ
f ,K).

Theorem 4.4. Under the conditions of Conjecture 4.3, we have, for any height one prime P of IK =
I[[ΓK ]],

ordP
(
CharIK (XΣ

Ford
(f/K∞))

)
≥ ordP (LΣ

f ,K),

unless P = P+I[[ΓK ]] for some height one prime P+ of I[[Γ+
K ]].
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Proof. Let D = (A, f , 1, 1,Σ) be a p-adic Eisenstein datum as defined in [SU14], with A ⊃ Zp[i,DK ] a
finite Zp-algebra. Define ΛD := I[[ΓK ]][[Γ−

K ]] as in [SU14]. The proof follows essentially from Section
7.4 of [SU14], with the exception that we exclude primes P = P+ΛD for some height one prime P+ of
I[[Γ+

K ]].
By [SU14, Proposition 13.6(1)], for sufficiently large Σ, there exists a p-adic Eisenstein series ED

whose formal q-expansion coefficients lie in ΛD, along with a set CD of coefficients of ED. This set
satisfies that any height one prime P of ΛD containing CD must be of the form P = P+ΛD for a height
one prime P+ of I[[Γ+

K ]].
By [SU14, Theorem 7.7], we have

ordP
(
CharIK (XΣ

Ford
(f/K∞))

)
≥ ordP (LΣ

f ,K)

for all height one primes P of ΛD not of the form P+ΛD. The claim now follows directly. □

Remark 4.5. Since primes of the form P = P+ΛD for height one primes P+ of I[[Γ+
K ]] are excluded,

Proposition 13.6 (2) of [SU14] is unnecessary. Hence, we omit the conditions on N and on ρ̄f |Iℓ for
primes ℓ | N , where ρ̄f := ρf mod mI, with mI being the maximal ideal of I. See also the remark after
Theorem 3.26 in [SU14].

Corollary 4.6. There exists a nontrivial multiplicative set S ⊂ Λ+
K ⊂ ΛK such that

S−1CharΛK
(XFord

(E/K∞)) ⊂ (LPR
p (E/K))

holds in S−1ΛK .

Proof. By [Roh84], the p-adic L-function LΣ
f ,K is not contained in pϕIK . Let P1, . . . , Pn be height one

primes of IK with ordPi
LΣ
f ,K > 0. Thus each Pi = P+

i IK for some height one prime P+
i of I[[Γ+

K ]].

It follows that Pi ̸⊂ pϕIK . Select hi ∈ Pi \ pϕIK , define T as the multiplicative set generated by
{hi : i = 1, . . . , n}, and set S = ϕ(T ). Applying Theorem 4.4, [SU14, Corollary 3.8], Corollary 2.7,
Corollary 2.5, and Proposition 3.5, the result follows. □

4.3. Proof of Theorem 4.2.

Theorem 4.7. For every nontrivial multiplicative set S ⊂ ΛK , the following statements are equivalent:

(1) S−1CharΛK
(XFord

(E/K∞)) ⊂ (LPR
p (E/K)).

(2) S−1CharΛK
(XFGr

(E/K∞))Λur
K ⊂ (LGr

p (E/K)).

The same equivalence also holds for the reverse inclusions.

Proof. This result is essentially [BSTW24, Proposition 9.18], building on explicit reciprocity laws for the
Beilinson-Flach classes and global Poitou–Tate duality. See also [BCS25, Proposition 4.1.3] and [CGS23,
Proposition 3.2.1]. □

By Theorem 4.7 and Corollary 4.6, there exists a nontrivial multiplicative set S ⊂ Λ+
K ⊂ ΛK such

that

S−1CharΛK
(XFGr

(E/K∞))Λur
K ⊂ (LGr

p (E/K)).

We may assume S is generated by prime elements in the unique factorization domain ΛK . For a height-
one prime P ⊂ Λur

K with P ∩ S ̸= ∅, we have P = P+Λur
K for some prime P+ ⊂ Λur,+

K . However, by
[Hsi14, Theorem B] and Proposition 3.13,

µ(LGr
p (E/K)−) = µ(LBDP

p (E/K)) = 0,

where µ(·) denotes the µ-invariant. Hence, we have

ordP (LGr
p (E/K)) = 0

if P ⊂ Λur
K is a height-one prime of the form P = P+Λur

K for some P+ ⊂ Λur,+
K . It follows that

CharΛK
(XFGr

(E/K∞))Λur
K ⊂ (LGr

p (E/K)).

Moreover, if condition (Im) holds, we can establish that part (1) of Conjecture 1.1 is true. The
argument is analogous to that of [SU14, Theorem 3.30], employing both the results of Kato in [Kat04,
Theorem 17.4] and a commutative algebra lemma from [SU14, Lemma 3.2]. The validity of part (1) of
the conjecture, in turn, implies that part (2) also holds. We note that while the original proof in [SU14]
assumes the stronger condition Im(ρE) ⊃ SL2(Zp), this requirement can be relaxed to our condition
(Im), as is discussed in the final paragraph of [Ski16, page 187].
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5. Applications

5.1. Cyclotomic main conjectures. Let E/Q be an elliptic curve of conductor N , and let p > 2 be
a prime at which E has good ordinary reduction. Assume that the residual representation ρ̄E : GQ →
Aut(E[p]) is irreducible.

Conjecture 5.1 (Mazur’s main conjecture). XFord
(E/Q∞) is ΛQ-torsion and

CharΛQ(XFord
(E/Q∞)) = (LMSD

p (E/Q)).

Let K be an imaginary quadratic field such that p splits in K and the pair (E,K) satisfies the Heegner
hypothesis. Arguing as in [SU14, Theorem 3.33], and combining Theorem 4.2, descent arguments, and
Proposition 3.7, we obtain the following result. Note that by a result of Serre ([Ser87, Section 3.3]), the
irreducibility of ρ̄E implies its absolute irreducibility when p > 2.

Theorem 5.2. XFord
(E/Q∞) is ΛQ-torsion and

CharΛQ(XFord
(E/Q∞))⊗Qp = (LMSD

p (E/Q))

in ΛQ ⊗Qp. Moreover, if condition (Im) holds, we have

CharΛQ(XFord
(E/Q∞)) = (LMSD

p (E/Q))

in ΛQ.

As a corollary, we obtain the following result concerning the cyclotomic analogue of the BDP main
conjecture.

Corollary 5.3. If LGr
p (E/K)+ is nontrivial, then XFGr

(E/K+
∞) is Λ+

K-torsion and

CharΛ+
K
(XFGr

(E/K+
∞))Λur,+

K ⊗Qp = (LGr
p (E/K)+)

in Λur,+
K ⊗Qp. Moreover, if condition (Im) holds, we have

CharΛ+
K
(XFGr

(E/K+
∞))Λur,+

K = (LGr
p (E/K)+)

in Λur,+
K .

Proof. This result follows from a combination of Theorem 5.2 (applied to E and EK), Proposition 3.7,
[CGS23, Proposition 3.2.1] (a cyclotomic analogue of Theorem 4.7, see also [BSTW24, Proposition 9.18]),
and the nonvanishing results of Rohrlich [Roh84]. □

5.2. Anticyclotomic main conjectures. Let E/Q be an elliptic curve of conductor N , let p > 2 be a
prime such that E has good ordinary reduction at p, and let K be an imaginary quadratic field such that
pOK = pp̄ splits in K and the pair (E,K) satisfies the Heegner hypothesis. Assume that the residual
representation ρ̄E |GK

: GK → Aut(E[p]) is irreducible.

Conjecture 5.4 (BDP main conjecture). XFGr(E/K
−
∞) is Λ−

K-torsion and

CharΛ−
K
(XFGr

(E/K−
∞))Λur,−

K = (LBDP
p (E/K)).

We define the compact Selmer group

Sord(E/K
−
∞) = lim←−

n

lim←−
m

Selpm(E/K−
n ),

where K−
n is the subfield of K−

∞ with [K−
n : K] = pn for each positive integer n.

Fix a modular parametrization π : X0(N) → E. In [PR87], Perrin-Riou constructed an element
κ ∈ Sord(E/K

−
∞) using the Kummer images of Heegner points on X0(N), which is non-torsion over Λ−

K

by a result of Cornut–Vatsal [CV07]. She then formulated the anticyclotomic main conjecture as follows.

Conjecture 5.5 (Heegner point main conjecture). The modules Sord(E/K
−
∞) and XFord

(E/K−
∞) are

both of Λ−
K-rank one, and

CharΛ−
K
(XFord

(E/K−
∞)tor) = CharΛ−

K
(Sord(E/K

−
∞)/Λ−

K · κ)
2.
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Theorem 5.6. (1) XFGr
(E/K−

∞) is Λ−
K-torsion and

CharΛ−
K
(XFGr

(E/K−
∞))Λur,−

K ⊗Qp = (LBDP
p (E/K))

holds in Λur,−
K ⊗ Qp. Moreover, if the representation ρE |GK

: GK → AutZp
(TpE) is surjective,

then

CharΛ−
K
(XFGr(E/K

−
∞))Λur,−

K = (LBDP
p (E/K)).

(2) The modules Sord(E/K
−
∞) and XFord

(E/K−
∞) are both of Λ−

K-rank one, and

CharΛ−
K
(XFord

(E/K−
∞)tor)⊗Qp = CharΛ−

K
(Sord(E/K

−
∞)/Λ−

K · κ)
2 ⊗Qp

holds in Λ−
K ⊗Qp. Moreover, if the representation ρE |GK

: GK → AutZp
(TpE) is surjective, then

CharΛ−
K
(XFord

(E/K−
∞)tor) = CharΛ−

K
(Sord(E/K

−
∞)/Λ−

K · κ)
2.

We prove this theorem in the remainder of this subsection. We begin by recalling some results
concerning the Heegner point main conjecture.

Theorem 5.7. The modules Sord(E/K
−
∞) and XFord

(E/K−
∞) are both of Λ−

K-rank one, and

CharΛ−
K
(XFord

(E/K−
∞)tor)⊗Qp ⊃ CharΛ−

K
(Sord(E/K

−
∞)/Λ−

K · κ)
2 ⊗Qp

holds in Λ−
K ⊗Qp. Moreover, if the representation ρE |GK

: GK → AutZp
(TpE) is surjective, then

CharΛ−
K
(XFord

(E/K−
∞)tor) ⊃ CharΛ−

K
(Sord(E/K

−
∞)/Λ−

K · κ)
2.

Proof. The result follows directly from [How04, Theorem B] and [CGS23, Theorem 5.5.2]. □

Arguing as in [BCK21, Theorem 5.2], we obtain the following result.

Theorem 5.8. The module XFGr(E/K
−
∞) is Λ−

K-torsion, and for every nontrivial multiplicative set

S ⊂ Λ−
K , the following statements are equivalent:

(1) S−1CharΛ−
K
(XFGr

(E/K−
∞))Λur,−

K ⊃ (LBDP
p (E/K)).

(2) S−1CharΛ−
K
(XFord

(E/K−
∞)tor) ⊃ S−1CharΛ−

K
(Sord(E/K

−
∞)/Λ−

K · κ)2.
The equivalence also holds with the divisibility reversed.

Since LBDP
p (E/K) is nonzero ([BCK21, Corollary 4.5]), by the arguments presented in Section 4.3,

there exists a nontrivial multiplicative set S ⊂ Λ+
K ⊂ ΛK such that for any s ∈ S, γ+ − 1 ∤ s, and

S−1CharΛK
(XFGr

(E/K∞))Λur
K ⊂ (LGr

p (E/K)).

By Lemma 2.3 and standard properties of characteristic ideals (see, e.g., [SU14, Corollary 3.8]), we have

CharΛ−
K
(XFGr

(E/K−
∞))Λur,−

K ⊗Qp ⊂ (LBDP
p (E/K)).

The reverse divisibility is established by combining Theorem 5.7 and Theorem 5.8.
Moreover, if the representation ρE |GK

: GK → AutZp
(TpE) is surjective, then by Theorem 4.2 and

Lemma 2.3,

CharΛ−
K
(XFGr(E/K

−
∞))Λur,−

K ⊂ (LBDP
p (E/K)),

and the rest of the argument follows from Theorem 5.7 and Theorem 5.8 as before.

Remark 5.9. Via [BSTW24, Proposition 12.7], the condition in Theorem 5.6 that ρE |GK
has full image

can be weakened to condition (Im).

5.3. BSD conjectures. Let E/Q be an elliptic curve of conductor N , and let p > 2 be a prime such
that E has good ordinary reduction at p.

Theorem 5.10. Let r ≤ 1 be an integer. The following statements are equivalent:

(1) rankZE(Q) = r and #X(E/Q) <∞;
(2) corankZp

Selp∞(E/Q) = r;
(3) ords=1L(E/Q, s) = r.
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Under any of the above conditions, if condition (Im) also holds, then the p-part of the BSD formula for
E is valid, i.e., ∣∣∣∣L(r)(1, E)

r! · ΩERE

∣∣∣∣
p

=

∣∣∣∣∣#X(E)[p∞] ·
∏
ℓ|N cℓ(E)

(#E(Q)tor)2

∣∣∣∣∣
p

,

where RE is the regulator of E(Q), ΩE is the Néron period, cℓ(E) is the Tamagawa number at a prime
ℓ, and | · |p denotes the p-adic absolute value.

Proof. The implication (1) ⇒ (2) is immediate.
The implication (3) ⇒ (1) is established by the work of Gross–Zagier [GZ86] and Kolyvagin [Kol90].
For the implication (2)⇒ (3), one can choose an imaginary quadratic fieldK such that ords=1L(E

K , s) ≤
1 and (E,K) satisfies the Heegner hypothesis, as shown in [FH95]. Analogously to [Wan21, Theorem
1.9], by applying descent arguments to the rational part of Theorem 5.6(2) and using the Gross–Zagier
formula, we obtain

corankZp
Selp∞(E/K) = 1 ⇒ ords=1L(E/K, s) = 1,

thus establishing (2) ⇒ (3).
The p-part of the BSD formula in the rank zero case follows from the integral part of Theorem 5.2,

combined with descent arguments (see [SU14, Section 3.6.1] for details).
Similarly, by choosing an imaginary quadratic field K as described above, the p-part of the BSD

formula in the rank one case follows from the integral part of Corollary 5.3, [CGS23, Proposition 2.3.2],
the fact that LGr

p (E/K)+(1) = LGr
p (E/K)−(1) ̸= 0, and the descent arguments in [JSW17]. □
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