MAIN CONJECTURES FOR NON-CM ELLIPTIC CURVES AT GOOD ORDINARY
PRIMES

XIAOJUN YAN AND XIUWU ZHU

ABSTRACT. Let E/Q be an elliptic curve, K an imaginary quadratic field, and let p > 2 be a prime that
splits in K and at which F has good ordinary reduction. Assume that the residual Galois representation
associated with (E,p) is irreducible. In this paper, we establish new cases of the two-variable Iwasawa
main conjecture for E over K. As applications, we obtain more general results on the p-converse theorem
and the p-part of the Birch and Swinnerton-Dyer formula in rank at most one.
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1. INTRODUCTION

Let E be an elliptic curve over Q. Fix an odd prime p and embeddings ¢, : Q — @p, loo : Q = C.
Let T, denote the p-adic Tate module of E, and let pg : Gg — Autg, (T, E) be the associated p-adic
Galois representation. Suppose that F has good ordinary reduction at p.

To study the arithmetic properties of F, such as those predicted by the Birch and Swinnerton-Dyer
conjecture, one often turns to tools from Iwasawa theory. There are two central objects in Iwasawa
theory: Selmer groups over Iwasawa extensions and p-adic L-functions. The Iwasawa main conjectures
establish a deep connection between them.

Let K be an imaginary quadratic field. Suppose that p = pp splits in K, where p is the prime
determined by the embedding ¢,. Let KI and K denote the cyclotomic and anticyclotomic Z,-
extensions of K, respectively, and set K., = K1 K. Then the associated Iwasawa algebras are given
by

Ay = Ly[[Gal(KL /K], Ak = Zy[[Gal(Koo/K)]].
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For any locally compact Z,-module M, let MY := Homcont (M, Q,/Z,) denote its Pontryagin dual.
We consider the following two types of Selmer groups over K:
(1) the Ag-module Selmer group Hz. (K,T,E ® A}), with ordinary local conditions at v | p;
(2) the Ag-module Selmer group Hr_ (K,T,E ® AY), with relaxed local conditions at v = p and
strict conditions at v = p.
As in Castella—Grossi—Skinner | ], we have two versions of the two-variable p-adic L-function:
(1) LIR(E/K) € Ak, which interpolates the algebraic parts of L(E/K, x~*, 1) for finite order char-
acters x of Gal(K/K);
(2) LSY(E/K) € A¥ = AKQA@ZPZ;;T, which interpolates the algebraic parts of L(E/K,x,1) for
characters x of Gal(K/K) with infinity type (b,a) such that @ < —1 and b > 1, where Z}*
denotes the ring of integers of the maximal unramified extension of @Q,.

Conjecture 1.1. Suppose that the residual representation pg|c, s irreducible.
(1) Hx, (K, T,E® AY)" is a torsion Ag-module and

Chary, (Hf, (K, T,E®Ay)") = (L}E/K)).
(2) Hy, (K, T,E® A})Y is a torsion Ag-module and
Chary, (Hr, (K, T,E® Aj)Y) AR = (LS (E/K)).
1.1. Main result.

Theorem 1.2. Suppose that the Heegner hypothesis holds (in particular, sign(E/K) = —1), and that
PE|Gy 1s absolutely irreducible. Then:

(1) Hy, (K, T,E® AY)" is a torsion Ax-module, and
Chary, (Hr, (K, T,E®AY)") C (LJR(E/K)).
(2) Hy, (K, T,E® AY)" is a torsion Ax-module, and
Chiaes (Hbq, (K, Ty & A§)Y) MY © (£57(B/K)).
Moreover, if
(Im) there exists T € Gal(Q/Q(pp=)) such that T,E/(pr (1) — 1)T,E is free of Z,-rank one,
then Congjecture 1.1 holds.

Skinner-Urban | ] first proved Conjecture 1.1(1) using Eisenstein congruences on GU(2,2) un-
der certain assumptions, in particular when sign(E/K) = +1. Wan | , ] proved Con-
jecture 1.1(2) via Eisenstein congruences on GU(3,1) under different assumptions, specifically when
sign(E/K) = —1 and E is semistable.

In | ], Burungale-Skinner-Tian-Wan established an equivalence between parts (1) and (2) of
Conjecture 1.1 by employing Beilinson-Flach elements and an explicit reciprocity law. This, combined
with the result of Skinner—Urban concerning Conjecture 1.1(1), enabled them to prove new cases of
Conjecture 1.1(2).

Our proof of Theorem 1.2 adopts an approach similar to that presented in | ]. A key obser-
vation is that, under more general conditions, Skinner—Urban in fact proved that the left-hand side of
Conjecture 1.1(1) is contained in the right-hand side after tensoring with the field of fractions of A}.
To achieve full equality, they applied Vatsal’s non-vanishing result [ | on the p-invariant of the
anticyclotomic projection of LI (E/K) to show that ordp (L) (E/K)) = 0 for height-one primes P of
Ak coming from A}. This required the following conditions:

(1) N = NTN~, where N* is divisible only by primes that split in K and N~ is a square-free
product of an odd number of primes that are inert in K, implying sign(E/K) = +1;
(2) For every £ | N—, the residual representation satisfies pg|r, # 1, where I is the inertia subgroup

at £.
In particular, this forces E to have a bad semistable prime.
In this paper, using the equivalence in [ |, we translate Skinner—Urban’s results on Conjec-

ture 1.1(1) into the setting of Conjecture 1.1(2). This allows us to conclude that the left-hand side of
Conjecture 1.1(2) is contained in the right-hand side after tensoring with the fractional field of Aj.
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To obtain a full inclusion, we apply Hsieh’s result | ] on the non-vanishing of the p-invariant
of the anticyclotomic projection of L5*(E/K) in the case sign(E/K) = —1. Since we work under the
Heegner hypothesis, we can avoid the assumption that F has a bad semistable prime.

As in | ], we then invoke Kato’s theorem on Mazur’s main conjecture [ ] to complete the
proof of Theorem 1.2.

Remark 1.3. Recently, using Wan’s extension of Skinner—Urban’s method to the setting of Hilbert mod-
ular forms | ], together with a base change argument, Burungale-Castella—Skinner | | proved
the rational version of Conjecture 1.1 (i.e., equality after tensoring with Q,,) under the assumptions that
p > 3 and pg is irreducible, and proved the integral version when condition (Im) also holds.

Roughly speaking, by choosing a suitable real quadratic field F' and a CM extension K'/F with
[K' : F] = 2, they study a three-variable main conjecture for Fr/K’ analogous to Conjecture 1.1(1).
Following Skinner—Urban’s method, Wan proves one direction of the divisibility result, similar to | 1,
and applies a non-vanishing theorem for the p-invariant of an anticyclotomic p-adic L-function over
totally real fields | ]

In their setup, the analogue of N~ is a square-free product of an even number of primes of F' inert in
K’, which in particular may be trivial. Thus, they can derive results on various main conjectures for £
without requiring £ to have bad semistable reduction. Their arguments require p > 3 in order to apply
[ |, but do not require (E, K) to satisfy the Heegner hypothesis.

As an application, we prove additional cases of one-variable main conjectures, the p-part of the Birch
and Swinnerton-Dyer formula, and the p-converse theorem.

Corollary 1.4. Let E/Q be an elliptic curve of conductor N, and let pt2N be a prime at which E has
good ordinary reduction. If r < 1, then the following are equivalent:

(1) corankz, Sely~(E/Q) = r;

(2) ords—1 L(E/Q, s) =r.
Moreover, under either condition, if (Im) also holds, then the p-part of the Birch and Swinnerton-Dyer
formula for E holds.

Remark 1.5. There has been extensive work on the p-part of the Birch and Swinnerton-Dyer formula
and the p-converse theorem for elliptic curves. In our context, see | I, [ I, 1 I, [ I,
[ | for earlier results on the p-part of the BSD formula, and | 1 [ 1 [ 1 [ ]
for related results on the p-converse theorem.

1.2. Strategy. By | , Proposition 3.2.1] or | , Proposition 9.18], the use of Beilinson-Flach
elements, combined with an explicit reciprocity law, establishes a connection between various formula-
tions of the main conjectures. As a result, the inclusion relations (and their converses) in Theorem 1.2(1)
and (2) are shown to be equivalent.

From the work of Skinner—Urban | ], especially Theorem 7.7 and Proposition 13.6(1), we have
the following:

Theorem 1.6. Suppose that the residual representation pg : Gg — Aut(E[p]) is irreducible. Then for
any height-one prime P of Ax, we have

ordp (CharAK (H}f

K T,E®A%)Y)) > ordp (L;ME/K)),
unless P = PYAg for some height-one prime P+ C A};.
Following [ , Proposition 9.18] (or | , Proposition 3.2.1]), we have:

Theorem 1.7. Under the same assumptions as in the previous theorem, for any height-one prime P of
A, we have
ordp (Chara, (H, (K,T,E ® Ay)") A) > ordp (L5 (E/K)),
unless P = PTAY for some height-one prime P C A%"".
However, by the result on the y-invariant of the BDP p-adic L-function due to Hsieh | l,ift P C AV
is a height-one prime of the form P = P*AY for some P+ C AW, then
ordp (ﬁgr(E/K)) =0.

Therefore, Theorem 1.2(2) holds, which implies that Theorem 1.2(1) also holds. Moreover, if condition
(Tm) is satisfied, then as in | , Theorem 3.30], we conclude that Conjecture 1.1(2) holds, and hence
so does Conjecture 1.1(1).
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2. SELMER GROUPS

Let K be an imaginary quadratic field with discriminant D, and let p > 2 be a prime that splits in
K, say pOg = pp. Let Qo denote the cyclotomic Z,-extension of QQ, and let K, be the Zg—extension of
K. We write KI and K for the cyclotomic and anticyclotomic Z,-extensions of K, respectively.

Define the Galois groups

Ig:= Gal(Qu/Q), Tk :=Gal(K./K), TL:=Gal(KI/K).
We identify ', = Gal(K% /K) with T'g = Gal(Qu/Q). Let 4* be a topological generator of T'%.
Let
Ag:=Zy[Toll, Ak =Z[Ckll, Ax =Z[[k]]
be the associated Iwasawa algebras. These rings are equipped with natural characters

€Q2GQ4»FQ‘—>A6, EK:GKA»FK‘—)A;((, €K7:|:ZGK4»F}|:(‘—>A;E(’X

arising from projection. The Pontryagin duals Ay, AY,, and Ali(’v are endowed with Gig- or G k-actions
via the inverses of these characters.

Throughout this paper, we normalize the reciprocity map of class field theory so that uniformizers cor-
respond to arithmetic Frobenius elements. With this convention, we identify algebraic Hecke characters
with their associated Galois characters.

2.1. Selmer groups for Iwasawa algebras. Let E/Q be an elliptic curve of conductor N with
(N, Dg) = 1. We assume that F has good ordinary reduction at p.

Discrete Selmer groups. Let F be either Q or K. For a prime w of F' above p, let F,, be the residue
field at w, and let E/g, be the reduction of E. The kernel of the reduction map on the Tate module is

denoted by FfT,E := ker (TpE — TpE/Fw)‘

Definition 2.1. For A any of Ag, Ak, or Ai, and for a prime w of F over p, we define the following
local conditions:

(1) H L y(Fu, T,E®AY) :=1Im (H'(F,,, F;T,E @ AY) = H*(F,,T,E ® A)),

(2) H. (Fy, T,E®AY) := HY(F,,, T,E ® AV),

rel
(3) HL.(Fy,T,E®AY) :=0.

str

Let X be a set of places of F' containing all places dividing pNoo. In the anticyclotomic case (F' =
K,A = A)), we assume moreover that every finite place in ¥ splits completely in K/Q. Let Fx be the
maximal extension of F' unramified outside X, and let Gp s = Gal(Fy/F).

In the case F' = Q, for a € {ord,str,rel} and M =T,E ® A(\{I, we define the Selmer group

HY(Qy, M)

Hj (Q M) :=ker | H(Ggx, M) = ] Hl(Qq,M)le(Qp )

g€X,gfpoo

Its Pontryagin dual is denoted by
Xr,(E/Qx) == Hr (Q,T,E ® Ay)".
In the case F = K, for a,b € {ord,str,rel}, A € {Ag,Ap, A%}, and M = T,E ® AV, we define

HY(Ky, M) H'(Kj, M)

Hy (K,M):=ker | H(Grs. M) = ][] Hl(Kq,M)le(KmM)  HI(Ky, M)

qeX,qtp

For simplicity, we write
(1) Hy, (K,M) := Hx (K, M) for a € {ord, str, rel},
(2) Hy (K,M):=Hy (K, M).
For a € {ord, str, rel, Gr}, we define the dual Selmer groups
X5, (B/Ko) = HY (K, TyE @ AY,)",  Xr, (B/KE) = HE (K, T,E @ AE)".

For any prime q of K, let I; denote the inertia subgroup of G, .
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Lemma 2.2. For any prime q1p of K, we have:
(1) HI(GKQ/IUH (T,E @ Aj)') =0.
(2) Chary, (H'(I, T,E ® AY,)9%)Y) = (Py(ex (Frob, 1)), where
Py(X) = det (1 — Nm(q) "' X - Frobg | V,E) .

Proof. For simplicity, let M := T,E ® A); and N := T,E ® Ag. We have a natural G-equivariant
perfect pairing
MxN —Q,/Z,(1),
which induces the perfect local Tate pairing
HY (K4, M) x H'(Kq,N) = Q,/Z,
for every place q. Let q 1 p be a prime of K.

(1) Since Gk, /Iy = (Frobg) ~ Z has cohomological dimension 1, the groups H'(Gk, /I, N'e) and
H'(Gk,/Iq, M's) annihilate each other under local Tate duality. The inflation-restriction exact sequence
is

0 — H'(Gk, /I, N') - H'(Gk,,N) — H'(I;, N)*a — 0.
Thus, to prove (1), it suffices to show that H*(Ij, N)%xa = Q.

Since q 1 p, the inertia group I contains a unique closed subgroup Jy such that I/J; ~ Z,(1) as a
Gal(K, q /K4)-module, and J, has pro-finite order prime to p. The inflation-restriction sequence yields

H'(Iq,N) = H'(Iq/Jq, N70).

Let Ny := T,E”7s. Since ex(I4) = 1, we have N71 = Ny ® Ag. Let o4 be a topological generator of
I,/ Jq. For any cocycle ¢ representing a class in H'(I4/Jq, No ® Ag)%%a and any g € Gk, , we have the
relation g - ¢ = ¢. This implies that for some integer r = r(g),

971 (¢(0q)) = (g 7qg) = dl0g) = (1 4+ 0q + -+ 05 ")d(0g)-
As q does not split completely in K, /K, the image ex(Gk,) is non-trivial. We can therefore choose
g such that ex(g) # 1. However, since ex(oq) = 1, it follows that ¢(oq) = 0, which implies that
HY(I,, N)%%a = 0.
(2) Now we prove the second part. As before, we have the duality
(H'(Iq, M)%%a)Y ~ H (G, /I, N'9).

Since

HY(Gr, /Iq, N') =~ (T,E's ® Ak)/(1 — Frob, ),
it follows that

Fitta, ((H'(Iy, M)“%0)Y) = (Py(ex (Frob, 1))).
This Fitting ideal is principal and therefore divisorial. The characteristic ideal Chary . ((H*(Iq, M)%%a)V)
is the minimal divisorial ideal containing the Fitting ideal. Hence, we have

Charp, (H' (Ig, M)“%4)") = (Py(ex (Froby))).

O
Lemma 2.3. The natural Ay -module homomorphism
Xro, (B/Koo) /(7" = D) Xr, (E/Kxo) = Xre, (B/KL)
18 a pseudo-isomorphism.
Proof. The result follows from [ , Proposition 3.1] combined with Lemma 2.2(1). Note that in our
case, every finite place in X splits in K. (I

We also consider an imprimitive Selmer group. For M = T,E ® A}, we define

YKy, M)
1 R o\t
Hps (K, M):=ker | H'(Grx, M) = H LKD)

and its Pontryagin dual X7 (E/Ku) = Hys (K,M)V.
or ord
In the proof of | , Lemma 3.16], the following conclusion is essentially demonstrated.

Lemma 2.4. X%md (E/K) is a torsion Ax-module.
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Combining with Lemma 2.2, we have the following corollary.
Corollary 2.5. Xr,_,(E/Ky) is Ax-torsion, and
Chary, (X7 (E/Kx)) D Charp, (Xr,,(B/Kx))  [[  (Palex(Frobyh))).
a€x—{p,p}

2.2. Selmer groups for Hida families. Let W be an indeterminate and Ay = Z,[[W]]. We identify
Aw with A;r( by mapping the topological generator v+ to 1+ W, which induces the character ey : G —

Ay
Let L C Q, be a finite extension of Q, with ring of integers 0. Let I be a local reduced finite
integral extension of Aw,0 := Aw ®z, O. Recall that a continuous O-algebra homomorphism ¢ €

Homeont 0-alg(I, Q) is said to be arithmetic if it satisfies the condition ¢(1 + W) = (,(1 + p)*¢~2 for
some p-power root of unity (s and some integer k4. Let t4 > 0 be the integer such that (4 is a primitive
pte~1-th root of unity, and let X¢ - Aa /Q* — ppe~ be the unique character that has a p-power conductor

and satisfies x4 ,(1 4+ p) = C(;l. We define the set of arithmetic points with weight kg > 2 as
Xio= {qb € Homeont 0-atg (I, Qp) : ¢ is arithmetic , ky > 2} .
Let f be an I-adic ordinary eigenform of tame level N and trivial nebentypus, namely a formal ¢-

expansion f = 37 _, a,(f)¢" € I[[¢]] with the property that for any arithmetic point ¢ € Xf o, the
corresponding specialization

£ = > élan(f)q”

is an ordinary modular form in the space My, (Np'®,w”s~2x4; ¢(I)). Here, w denotes the Teichmiiller
character.
We assume that f satisfies the following irreducibility condition:

(irreds) the residue representation of pg, is irreducible for some (hence all) ¢ € Xf .

Under this condition, there exists a continuous, I-linear Galois representation pg : Gg — GL(T¥), where
the representation space Tt is a free I-module of rank two. This representation is unramified at all primes
£+ Np and is uniquely characterized by the relations:
trpg(Froby) = ae(f), £+ Np,
and
det(ps) = ey,
where € is the p-adic cyclotomic character.

Let F1 be the field of fractions of the integral domain I, and let V¢ := T ®p F1. Since f is ordinary,
there exists a one-dimensional Fj-subspace Vf+ C V¢ that is stable under the action of Gg,. Furthermore,
Go, acts on the quotient space Vy := Vg/ Vf+ via an unramified character dg, which is characterized by
the condition d¢(Frob,) = a,(f). The intersection 77 := T¢ N V;' is then a rank-one free I-summand of
T¢. Consequently, the quotient module Ty := T¢/ Tf+ is also a free I-module of rank one.

Let E/Q be an elliptic curve with good ordinary reduction at p. Let f be an I-adic ordinary eigenform,
and let ¢ € X{', be a weight 2 arithmetic specialization (i.e., ¢(1 + W) = 1) such that the specialized
form ¢(f) is the p-stabilization of the newform associated to E.

Lemma 2.6. For cvery prime q of K dividing p, we have H* (GKq /g, (TpE/IF,, ® A%)Iq) =0.

Proof. Let aq : Gi, — Z, be the unramified character associated to TpE/]Fq. The action of G, on

the module TpE/Fq ® A}, is then given by the character aqal}l. Let Cy C Ak be the ideal generated
by the set {ex(g9) —1: g € I}, and let 04 € Gk, be a lift of Froby. A standard calculation yields the
isomorphism:

' (GKq /1o, (TyEpp, A%)Iq) =~ Homets ((AK/Cq)EK(Uq):agl(Fmbq)»Qp/Zp> ,
where (AK/Cq)EK(Uq):O‘le(F”b“) denotes the submodule of Ag /Cy annihilated by the operator e (oq) —

ag ' (Frobg). Since aq(Froby) is not a root of unity, this submodule must be trivial. This completes the
proof. O

Corollary 2.7. Let py := ker ¢. Then there is a natural isomorphism:

XE B/ Koo) [0 XF, £/ Koo) @16 O = X (E/Kx).
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Proof. The result follows from | , Proposition 3.7], as the preceding lemma verifies that the necessary
local conditions at primes above p are satisfied. O

3. p-ADIC L-FUNCTIONS

3.1. A three-variable p-adic L-function. Let f be an [-adic ordinary eigenform of tame level N and

trivial character as described in Section 2.2. Suppose L contains Q[unyp, 4, D}(p].
Define

x](IlK,O = {¢ € Homcont O—alg(]IKv@p) : (blll € x](ll?(% ¢(7+) = C—i—(l +p)k¢‘ﬂ_27 ¢(’Y—) = C—}v
where (4. are p-power roots of unity. For each ¢ € Xj,_ », let kg, £y, and X, be the corresponding data
associated with ¢[;. Define

§¢ = (b o (EK/EW), 9¢ = wg_k‘bxglfqg.
These are finite-order idele class characters of Aj. For an idele class character ¢, denote its conductor
by fy. Set

}:]/IK,O = {¢ € 3':](IIK,O 'p | f&qﬂptd) | Nm(f§¢),p ‘ fe(p}'

Theorem 3.1 (] ], Section 3.4.5). Let ¥ be a finite set of primes containing all primes dividing
pNDyg. Let f be an I-adic ordinary eigenform of tame level N and trivial character. Assume f satisfies
(irreds). Then there exists ﬁEK € Ik such that for every ¢ € Z{ﬁK,O,

LF 1 (8) =ug, ap(£,) o Nmloy)
| (Up = 2)20(6, " )Nm(fo, 05)" L7 (/K. 6, o, —1)

(—2mi) ke =207 Qp '

where ug, is a p-adic unit depending only on £y, 9(9;1) is the global Gauss sum, 0x is the differential
ideal, and Qi are the canonical periods associated to fy.

Remark 3.2. Note that we adopt the arithmetic Frobenius normalization for the reciprocity map of class
field theory, whereas | ] employs the geometric Frobenius convention.

3.2. Two variable p-adic L-functions: type I. Let f = > a,q" € S2(I'g(N)) be a newform with
p 1 ap, and let ¢y € Z,, be the congruence number associated with f as defined in | , Section 7] or

[Rib83].

Theorem 3.3 (] ], Theorem 1.2.1). There exists an element LI(f/K) € cJIlAK such that for
every finite-order nontrivial character € of 'k,

—1 —1 _
—ord, (Nm p 1 L(f/K, &1 1)
,CI(f/K)(g) _ W(g)pordp(Nm(fg))/2ap dp (Nm(fe)) (1 o > (1 o ) s
P 0612, 0412) 872 <fv f>

where a,, is the p-adic unit root of the polynomial x> — ayx +p, (f,g) = fFO(N)\H f(r)g(T)dr denotes the
Petersson inner product on S2(I'1(N)), and W (&) is the Artin root number.

Let E/Q be an elliptic curve with good ordinary reduction at the prime p. Let fg € S2(T'o(N)) denote
the newform associated with E, and let 75 : Xo(IN) — E be a modular parametrization.

Definition 3.4 (Perrin-Riou’s p-adic L-function). Define Perrin-Riou’s p-adic L-function as
P 1 deg(mg)
LYY E/K) = (1 - ag) (1 - ag> T2 L) (fe/K) € Ak,
P P E
where cg denotes the Manin constant.

Let f be an [-adic ordinary eigenform and ¢ € X{, as in Section 2.2, with ¢(1+ W) = 1 and f; equal
to the p-stabilization of fg.

Proposition 3.5. Assume that the residual representation pg : Gg — Aut(E[p]) is irreducible. Then
Ligpeid)=a- [[ Pylex(Froby))- LyME/K),
q€X,aqfp

where
Py(X) = det(1 — Nm(q)"*X - Frobg | V, E'%)
7



is the local Euler factor, a is a p-adic unit independent of &, and
p@id: I =10AK — ¢(1) @ Ak

is the natural homomorphism.

Proof. We have W (€) = g(£)/+/Nm(f¢). By | , Corollary 4.1], cg is a p-adic unit. According to
[ , Lemma 3.1.2], deg(mg) = c¢f, up to a p-adic unit. Additionally, | , Lemma 9.5] shows that
e fe) _ i(2mi)2Qf Q.

Cfe
These results establish the desired equality. O

3.3. Cyclotomic p-adic L-function. Let E/Q be an elliptic curve with good ordinary reduction at
the prime p. Choose generators 0+ of H;(F,7Z)*, and define the Néron periods QE by

+
QE:/ WE,
e

where wg is a minimal differential on E. We normalize 6+ so that Qf € Ry and QF, € iR~o.
Let a, be the Fourier coefficient of the newform fg associated with F, and let a), be the p-adic unit
root of 2% — apx + p, as defined previously.

Theorem 3.6 (] ], Theorem 1.1.1). There exists an element LY'SP(E/Q) € Ag such that for every
finite-order character x of I'g,

_p ) . -

ﬁMSD(E/Q)( ) = gx)ar, ar X s of conductor p" # 1,
P X) = 1—a-1)2. LEY 1
( Oép ) QE 5 X .

where g(X) = -, mod pr X(a)e?™/P" js the Gauss sum.
Let LIR(E/K)T € Ag ~ A} be the image of LR (E/K) under the map induced by the projection
Ty — T} ~Tg.
Proposition 3.7 (| ], Proposition 1.2.4). We have
LMEIK) = LPP(B/Q) - £ (BX/Q),

up to a unit in Aé, where EX is the quadratic twist of E by the character corresponding to the quadratic
extension K/Q.

3.4. Two variable p-adic L-functions: type II.

Theorem 3.8 (] ], Theorem 1.4.1). There exists an element LII(f/K) € Frac Ax such that for
every character § of 'k crystalline at both p and p, and of infinity type (b,a) with a < —1 and b > 1,
20=bib=a=11(p + 1)[(b) Natb+L EE, f,1)
LI(f/E)(E) = : o — - L(f/K,¢&, 1),
P U O R N B (e ) e T () R AR

where O, is the theta series associated to the Hecke character & = £|-|7%, 7 denotes complex conjugation,
and

EE 1) = (1= p 1 (P)ay)(1 = &@)ay (L —p~ 7 (P)ap)(1 — € (p)a, ).
Let A := A K@Zgr, where Z," is the completion of the ring of integers of the maximal unramified
extension of Q.
Theorem 3.9 (] |, Chapter 2, Theorem 4.14). There exists an element L,(K) € A¥ such that for
every character £ of T of infinity type (j,k) with 0 < —j <k,

= EK 1 (G2) (-6 o - €6 - L0

where Q,, and Qg are the CM periods associated with K.

Ly(K)(E)

Definition 3.10 (Greenberg’s p-adic L-function). Define Greenberg’s p-adic L-function as
LY (f/K) = hi - Lo(K)' - L1 (f/K),

where hi denotes the class number of K, and L,(K)' is the image of L,(K) under the map A} — A¥,
v =T fory €Tk
8



Lemma 3.11 ([ ], Lemma 1.4.4). Greenberg’s p-adic L-function LS*(f/K) is integral, i.e., it
belongs to A% .

3.5. BDP p-adic L-function. Assume that Dy is odd, Di # —3, and that the Heegner hypothesis
holds. Fix an integral ideal n C Oy satisfying Ok /n ~ Z/NZ. Define A}l{r’i = Aﬁ@Zgr.

Theorem 3.12 (| ], Theorem 2.1.1). There exists an element LEPY(f/K) € A~ character-
ized by the following interpolation property: for every character & of I'y crystalline at both p and p,

corresponding to a Hecke character of K of infinity type (n, —n) with n € Zso and n =0 mod p — 1,
Q" () T(n+1)Em1!
CEPP(F/E) () = o - el E DS )
K 402m)?t1{/Dg

Let £5*(f/K)* denote the image of £5(f/K) under the natural projection AR — AuKr’i. We have
the following proposition.

(1= apE@p T+ EE) ) L(f/K,E,1).

Proposition 3.13 (] |, Proposition 1.4.5).
L8N (f/R)™ - AT = £BPP(f/K) - AR

4. MAIN CONJECTURES OVER K,

4.1. Two variable Iwasawa main conjectures. Let E£/Q be an elliptic curve of conductor N and
p > 2 be a prime at which F has good ordinary reduction. Let K be an imaginary quadratic field in
which the prime p splits, i.e., pOg = pp. Assume that the residual representation

pElax 1 Gk — Aut(E[p])

is irreducible.

Let f be the newform associated to E. For the remainder of this paper, we will denote L& (f/K)
by L (E/K), and similarly £5*(f/K)* and £BPF(f/K) by analogous notation involving E/K. We
consider the following two-variable Iwasawa main conjectures:

Conjecture 4.1. (1) Xr,.,(E/Ko) is Ag-torsion and
Chara, (Xr7,.,(B/Kx)) = (L, (E/K)).
(2) Xry,(E/Ks) is Ax-torsion and
Char . (Xre, (B/Kx))AK = (L7 (E/K)).
The main theorem we will establish is the following:

Theorem 4.2. Suppose the residual representation pglc, : Gk — Aut(E[p]) is absolutely irreducible.
If the Heegner hypothesis holds (in particular, sign(E/K) = —1), then:
(1) Xz, (F/K) is Ax-torsion and
Chary (X7, (E/Kx)) C (£, (E/K)).
(2) Xz, (E/Ko) is Ax-torsion and
Charp, (X7, (B/Koo)) AR C (L (E/K)).
Moreover, if condition (Im) holds, then Congecture J.1 is true.

We will prove Theorem 4.2 in the following two subsections.

4.2. A three variable Iwasawa main conjecture. Let f be an [-adic ordinary eigenform of tame level

N and trivial nebentypus as in Section 2.2. Suppose that L D Q[unp, i, D}f], I is a normal domain, and

f satisfies (irreds).

Conjecture 4.3 (] ). Let ¥ be a finite set of primes containing all primes dividing pN Dy . Then
Chary, (X7, (f/Kx)) = (LEx)-

Theorem 4.4. Under the conditions of Conjecture 4.3, we have, for any height one prime P of I =
I k]],
ordp (Char]IK (X;ord (f/KOO))) > ordp(EEK),
unless P = PHI[[Lk]] for some height one prime P+ of I[[T'L]].
9



Proof. Let D = (A,f,1,1,X) be a p-adic Eisenstein datum as defined in | ], with A D Z,[i, Dk] a

finite Zy-algebra. Define Ap := I[[I'k]][['k]] as in | ]. The proof follows essentially from Section
7.4 of | ], with the exception that we exclude primes P = PTAp for some height one prime P* of
1Ty,

By | , Proposition 13.6(1)], for sufficiently large ¥, there exists a p-adic Eisenstein series Ep

whose formal g-expansion coefficients lie in Ap, along with a set Cp of coefficients of Ep. This set
satisfies that any height one prime P of Ap containing Cp must be of the form P = PTAp for a height
one prime Pt of I[[I'L]].

By [ , Theorem 7.7], we have

ordp (Chary, (X7 (f/Kx))) > ordp(Lf k)
for all height one primes P of Ap not of the form P*Ap. The claim now follows directly. O

Remark 4.5. Since primes of the form P = PTAp for height one primes P+ of I[[I'}]] are excluded,
Proposition 13.6 (2) of | | is unnecessary. Hence, we omit the conditions on N and on p¢|;, for
primes £ | N, where pg := pr mod my, with m; being the maximal ideal of I. See also the remark after
Theorem 3.26 in | ].

Corollary 4.6. There exists a nontrivial multiplicative set S C A} C Ag such that
S Charn, (X7, (E/Kx)) C (£, (E/K))
holds in S™1Ak.

Proof. By | ], the p-adic L-function Ef% ) 1s not contained in pglx. Let Pi,..., P, be height one
primes of Ix with ordpiEEK > 0. Thus each P; = P;"Ix for some height one prime P;' of ]I[[F;H

It follows that P; ¢ pglix. Select h; € P, \ pylk, define T as the multiplicative set generated by
{h; :i=1,...,n}, and set S = ¢(T). Applying Theorem 4.4, | , Corollary 3.8], Corollary 2.7,

Corollary 2.5, and Proposition 3.5, the result follows. O
4.3. Proof of Theorem 4.2.

Theorem 4.7. For every nontrivial multiplicative set S C Ak, the following statements are equivalent:
(1) S~'Chara, (Xz,,,(E/Kx)) C (L, (E/K)).
(2) S7'Chara, (Xrg, (E/Kx))AY C (L7 (E/K)).

The same equivalence also holds for the reverse inclusions.

Proof. This result is essentially | , Proposition 9.18], building on explicit reciprocity laws for the
Beilinson-Flach classes and global Poitou-Tate duality. See also | , Proposition 4.1.3] and [ ,
Proposition 3.2.1]. O

By Theorem 4.7 and Corollary 4.6, there exists a nontrivial multiplicative set S C A;r( C Ak such
that
S Chary, (X5, (E/Koo))AR C (L) (E/K)).
We may assume S is generated by prime elements in the unique factorization domain Ag. For a height-
one prime P C AW with PN S # (), we have P = PTAY for some prime Pt C A%, However, by
[ , Theorem B] and Proposition 3.13,

WL (B/K)™) = w(L,P (E/K)) =0,
where p(-) denotes the u-invariant. Hence, we have
ord p (LS (E/K)) =0
if P C AY¥ is a height-one prime of the form P = PTAY for some P+ C AuKr’+. It follows that
Chara, (Xrq, (B/Koe)) AR C (L5 (B/K)).

Moreover, if condition (Im) holds, we can establish that part (1) of Conjecture 1.1 is true. The
argument is analogous to that of | , Theorem 3.30], employing both the results of Kato in | ,
Theorem 17.4] and a commutative algebra lemma from | , Lemma 3.2]. The validity of part (1) of
the conjecture, in turn, implies that part (2) also holds. We note that while the original proof in [ ]
assumes the stronger condition Im(pg) O SL2(Z,), this requirement can be relaxed to our condition
(Im), as is discussed in the final paragraph of | , page 187].
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5. APPLICATIONS

5.1. Cyclotomic main conjectures. Let E/Q be an elliptic curve of conductor N, and let p > 2 be
a prime at which E has good ordinary reduction. Assume that the residual representation pg: Ggp —
Aut(E]p)) is irreducible.

Conjecture 5.1 (Mazur’s main conjecture). Xz, (E/Q) is Ag-torsion and

CharAQ(Xford (E/QOO)) = (Ci/ISD (E/Q))

Let K be an imaginary quadratic field such that p splits in K and the pair (F, K) satisfies the Heegner
hypothesis. Arguing as in [ , Theorem 3.33], and combining Theorem 4.2, descent arguments, and
Proposition 3.7, we obtain the following result. Note that by a result of Serre ([ , Section 3.3]), the
irreducibility of pp implies its absolute irreducibility when p > 2.

Theorem 5.2. Xz, (E/Qu) is Ag-torsion and

Charp, (Xr,,,(E/Qx)) © Qp = (L3P (E/Q))
in Ag ® Q. Moreover, if condition (Im) holds, we have

Chary, (X7, (E/Qx)) = (LYSP(E/Q))
mn AQ.

As a corollary, we obtain the following result concerning the cyclotomic analogue of the BDP main
conjecture.

Corollary 5.3. If LS (E/K)" is nontrivial, then Xz, (E/KZ) is Aj -torsion and
Chary ; (X, (B/KL)AET ©Q, = (L9 (B/K))
n A‘;;’+ ® Q,. Moreover, if condition (Im) holds, we have
Chary s (XYrq, (B/KL)ART = (L5 (B/K)")
n A‘;;"“.

Proof. This result follows from a combination of Theorem 5.2 (applied to E and EX), Proposition 3.7,
[ , Proposition 3.2.1] (a cyclotomic analogue of Theorem 4.7, see also | , Proposition 9.18]),
and the nonvanishing results of Rohrlich | ] O

5.2. Anticyclotomic main conjectures. Let E/Q be an elliptic curve of conductor N, let p > 2 be a
prime such that F has good ordinary reduction at p, and let K be an imaginary quadratic field such that
pOx = pp splits in K and the pair (F, K) satisfies the Heegner hypothesis. Assume that the residual
representation pgla, : Gk — Aut(E[p]) is irreducible.

Conjecture 5.4 (BDP main conjecture). Xz, (E/K5) is A -torsion and
Char,— (X7, (B/KL)AR ™ = (£, (E/K)).
We define the compact Selmer group
Sord(E/K) = m @ Selpm (E/ K ),

n m

where K, is the subfield of K with [K, : K] = p™ for each positive integer n.

Fix a modular parametrization 7: Xo(N) — E. In | ], Perrin-Riou constructed an element
k € Sorda(E/KZ) using the Kummer images of Heegner points on X(N), which is non-torsion over Ay
by a result of Cornut—Vatsal [ ]. She then formulated the anticyclotomic main conjecture as follows.

Conjecture 5.5 (Heegner point main conjecture). The modules Sora(E/KL) and Xz, (E/KZ) are
both of Ay -rank one, and

Char — (X7,,q(B/KX)tor) = Chary— (Sora(B/K L) /A - r)2.
11



Theorem 5.6. (1) Xz, (E/KL) ts Ag-torsion and
Chary (Xr, (B/KL) AR ™ ©Q, = (LyPF(B/K))

holds in Ay~ ® Q. Moreover, if the representation pgla, : Gk — Autg, (T E) is surjective,
then

Char,— (Xr, (B/KL)AR ™ = (L, (E/K)).
(2) The modules Sora(E/K3) and Xr,, (E/KZ) are both of Ay -rank one, and
CharA;( (XFpa (B K )tor) @ Qp = CharA;( (Sora(E/K )/ AR - k)2 ® Qp
holds in Ay @ Q. Moreover, if the representation pg|a, : Gk — Autg, (T,E) is surjective, then
CharA;((X]:ord (E/K)tor) = CharA;((SOTd(E/Ko_o)/AI_( k)%

We prove this theorem in the remainder of this subsection. We begin by recalling some results
concerning the Heegner point main conjecture.

Theorem 5.7. The modules Sora(E/K) and Xz, (E/KZ) are both of Ay -rank one, and
Chary (X5, ,(B/Kx)ior) © Q, O Chary_(Sora(B/K5)/Ag 1) 9 Q
holds in Ay @ Qp. Moreover, if the representation pgla, : Gx — Autg (T,E) is surjective, then
Chary (X, (E/KZ)or) O Chary (Sora(B/K5)/Af - 1)2.
Proof. The result follows directly from | , Theorem B] and | , Theorem 5.5.2]. O

Arguing as in | , Theorem 5.2], we obtain the following result.
Theorem 5.8. The module Xr, (E/K,) is Ag-torsion, and for every nontrivial multiplicative set
S C Ay, the following statements are equivalent:
(1) S7'Char,— (Xr, (E/KL))AR ™ O (LY (E/K)).
(2) S_lCharA;((X}-md(E/Ko_o)tor) 2 S_l(]harA;((Sord(E/Ko_o)/A;( k)2,
The equivalence also holds with the divisibility reversed.
Since LJPP(E/K) is nonzero (] , Corollary 4.5]), by the arguments presented in Section 4.3,
there exists a nontrivial multiplicative set S C Aj; C A such that for any s € S, y© — 11 s, and
S\ Chara (X, (B/ Ko ))ARE C (£5%(E/K)).
By Lemma 2.3 and standard properties of characteristic ideals (see, e.g., [ , Corollary 3.8]), we have
Char, - (X7, (B/KL)) AR ®Q, C (L7 (E/K)).

The reverse divisibility is established by combining Theorem 5.7 and Theorem 5.8.
Moreover, if the representation pg|q,: Gk — Autz, (T,E) is surjective, then by Theorem 4.2 and
Lemma 2.3,
Char,— (X7, (B/KL))A ™ C (L,°P(E/K)),
and the rest of the argument follows from Theorem 5.7 and Theorem 5.8 as before.

Remark 5.9. Via [ , Proposition 12.7], the condition in Theorem 5.6 that pg|c, has full image
can be weakened to condition (Im).

5.3. BSD conjectures. Let E/Q be an elliptic curve of conductor N, and let p > 2 be a prime such
that E has good ordinary reduction at p.

Theorem 5.10. Let r <1 be an integer. The following statements are equivalent:
(1) rankzE(Q) =7 and #I1(E/Q) < oo;
(2) corankz,Sel,(E/Q) = r;
(3) ords—1 L(E/Q,s) =r.
12



Under any of the above conditions, if condition (Im) also holds, then the p-part of the BSD formula for
E is valid, i.e.,

L1, E)
rl. QERE

[#IE) ] - Ty co(E)
D (#E(Q)tor)2 ’
P
where Rg is the regulator of E(Q), Qg is the Néron period, c,(FE) is the Tamagawa number at a prime
¢, and |- |, denotes the p-adic absolute value.

Proof. The implication (1) = (2) is immediate.

The implication (3) = (1) is established by the work of Gross—Zagier | ] and Kolyvagin | ]

For the implication (2) = (3), one can choose an imaginary quadratic field K such that ords— L(E¥ s) <
1 and (E, K) satisfies the Heegner hypothesis, as shown in | ]. Analogously to [ , Theorem
1.9], by applying descent arguments to the rational part of Theorem 5.6(2) and using the Gross—Zagier
formula, we obtain

corankz, Sel,~(E/K) =1 = orde—1L(E/K,s) =1,

thus establishing (2) = (3).

The p-part of the BSD formula in the rank zero case follows from the integral part of Theorem 5.2,

combined with descent arguments (see | , Section 3.6.1] for details).

Similarly, by choosing an imaginary quadratic field K as described above, the p-part of the BSD
formula in the rank one case follows from the integral part of Corollary 5.3, | , Proposition 2.3.2],
the fact that £5"(E/K)"(1) = LS(E/K)™ (1) # 0, and the descent arguments in [ ] O
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